TABLE OF CONTENTS

iii
V
ix
xvi
xix
1
6
6
7
7
8
11
12
13
13
15
15
16
17
20
21

Chapter 2 Boron deficiency in maize	24
2.1 Introduction	24
2.2 Materials and methods	25
2.2.1 Experiment 1: Field experiment	26
2.2.2 Experiment 2: Sand culture	26
2.3 Results	27
2.3.1 Experiment 1: Field experiment	27
2.3.2 Experiment 2: Sand culture	39
2.4 Discussion	47
Chapter 3 Morphological and physiological responses of maize to low boron	49
3.1 Introduction	49
3.2 Materials and methods	50
3.2.1 Experiment 1: Responses of maize to low B	50
3.2.1.1 Experiment 1.1: Sand culture	50
3.2.1.2 Experiment 1.2 : Nutrient solution	51
3.2.2 Experiment 2: Manual pollination between B0xB20	52
3.2.3 Experiment 3: Anatomy and morphology of silk and pollen	53
3.2.4 Experiment 4: pollen viability	55
All 3.3. Results ghts reserve	56
3.3.1 Experiment 1: Responses of maize to low B	56
3.3.1.1 Experiment 1.1: Sand culture	57
3.3.1.2 Experiment 1.2: Nutrient solution	72

3.3.2 Experiment 2: Manual pollination between B0xB20	87
3.3.3 Experiment 3: Anatomy and morphology of silk and pollen	90
3.3.4 Experiment 4: pollen viability	98
3.4 Discussion	104
Chapter 4 Genotypic variation in responses to boron in maize	109
4.1 Introduction	109
4.2 Materials and methods	110
4.3 Results	111
4.4 Discussion	153
Chapter 5 General discussion	156
5.1 Response of maize to boron application	156
5.2 Morphological and physiological response of maize to low boron	158
5.3 Genotypic variation in vegetative and reproductive responses	
to low boron in maize	162
5.4 General conclusion	164
5.5 Future research	165
References	166
References Curriculum vitae	179
Copyright [©] by Chiang Mai Univers	ity
All rights reserve	d

LIST OF TABLES

Table 9312136	Page
1.1 Boron requirement of some crops	12
2.1 B concentration (mg B kg ⁻¹) and B content (μg) in various plant parts	
of maize at 5-leaf stage grown in sand culture with and without added B	42
2.2 Dry weight (g plant ⁻¹), B concentration (mg B kg ⁻¹) and B content (μg)	
in various plant parts of maize grown in sand culture with and without added B at anthesis stage.	43
2.3 Yield, yield component, plant height and dry weight of shoot and	
root of maize grown in sand culture with and without added B	46
3.1 Boron concentration (mg B kg ⁻¹) and boron content (µg plant ⁻¹)	
in various plant part of maize (cv. NS72) at vegetative growth	60
3.2 Dry weight (g) and B concentration (mg B kg ⁻¹ DW) in anther and	
chaff of maize from 100 florets at reproductive development grown in	
sand culture with and without added B.	68
3.3 Effects of B on grain yield and the number per ear of maize (cv. NS 72)	71
3.4 Dry weight (g) of tassel, silk, the number of silk, silk length (cm)	sity
and B concentration (mg B kg ⁻¹) in some various reproductive parts	e (
of maize (cv. NS72) at anthesis (75DAS).	71
3.5 Effects of B on grain yield, 100 grain weight and the number of grain	
per ear of maize grown in sand culture	75
3.6 Dry weight (mg plant ⁻¹) and B concentration (mg B kg ⁻¹) in shoot	

and root of maize seedlings (7-day old) grown in nutrient solution	77
3.7 B concentration (mg B kg ⁻¹ DW) in various plant parts and the ratio	
of B content in shoot and root of two maize genotype grown in nutrient	
solution for 10 (H1) and 18 days (H2)	78
3.8 Effects of B on plant height (cm), number of leaf per plant of two maize	
genotypes grown in nutrient solution for 10 (H1) and 18 days (H2)	80
3.9 Grain set by crossing pollination of pollen and silk from B deficient	
plants (DB) and sufficient plants (SB).	89
3.10 Pollen sterility (%) of maize determined by iodine staining	96
3.11 Pollen germination (%) in media with and without added B	100
3.12 Effects of B deficiency on dry weight (g plant ⁻¹) in various plant part	
of maize and shoot: root dry weight at maturity	100
3.13 Effects of B deficiency on B concentration (mg B kg ⁻¹ DW)	
in various plant parts of maize (cv. NS72) at pollen shedding	101
3.14 Effects of B deficiency on B content (µg B plant ⁻¹) in various	
plant parts of maize (cv. NS72)	102
3.15 Effects of B deficiency on reproductive development of maize	103
4.1 Dry weight (g plant ⁻¹) of the YEB, total shoot and root of seven	NŁ
genotypes of maize at two levels of B supply at the 5-leaf stage	114
4.2 Boron content (μg plant ⁻¹) in the YEB, total shoot and root of the	e c
seven genotypes of maize at two levels of B supply at the 5-leaf stage	116
4.3 The ratio between shoot and root for dry weight and B content of seven	
genotypes of maize at two levels of B supply at the 5-leaf stage	117

4.4	Boron uptake (µg B g ⁻¹ root DW) of seven genotypes of maize at	
	two levels of B supply at the 5-leaf stage (H1)	119
4.5	Dry weight (g plant ⁻¹) in total shoot, husk and shoot: root ratio	
	dry weight of seven genotypes of maize at two levels of B supply	125
	at anthesis	
4.6	B concentration (mg B kg ⁻¹ DW) in baby corn and husk of seven	
	genotypes of maize at two levels of B supply at anthesis	129
4.7	Boron content (µg B plant ⁻¹) in plant parts of the seven genotypes	
	of maize at two levels of B supply at anthesis	132
4.8	Days of tassel emergence, days of silk emergence and the number	
	branches in tassel of seven genotypes of maize at two levels of B	
	supply at anthesis	137
4.9	Grain yield of maize (g ear ⁻¹) of the seven genotypes of maize at two	
	levels of B supply	143
4.10	Grain number (grain number ear ⁻¹) of the seven genotypes of	
	maize at two levels of B supply	144
4.11	Dry weight of 100 grains (g) of seven genotypes of maize at	
ลิขสิ	two levels of B supply	145
Copy	Correlation coefficients (R ²) between grain yield and boron concentration (mg B kg ⁻¹ DW) in reproductive tissue	Sity 149
A 4.13	Effects of B on days to tassel emergence, days to silk emergence,	e d
	the number of branches-tassel plant per plant, leaf number and	
	plant height (cm) of the seven genotypes of maize at two levels of B	
	supply at anthesis	154

LIST OF FIGURES

Fig	ure	Page
1	Structure of the thesis	5
1.1	Boron deficiency is widespread area	10
2.1	Dry weight (g plant ⁻¹) in various plant parts of maize at 5-leaf stage	
	grown in the field	30
2.2	Total dry weight (g plant ⁻¹) of maize at 5-leaf stage grown in the field	31
2.3	B concentration (mg B kg ⁻¹)) in various plant parts of maize at 5-leaf	
	stage grown in the field	32
2.4	B content (μg plant ⁻¹) in various plant parts of maize at 5-leaf stage	
	grown in the field	33
2.5	Tassel dry weight (g plant ⁻¹) of maize at anthesis grown in the field	34
2.6	Dry weight (g plant ⁻¹) in various plant parts of maize at anthesis grown	
	in the field	35
2.7	B concentration (mg B kg ⁻¹) in various plant parts of maize at anthesis	
	grown in the field	36
2.8	B content (µg B plant ⁻¹) in various plant parts of maize at anthesis grown	41
	in the field	37
2.9	Grain yield, yield components and plant height of maize grown in	ity
		38
2.10	O Dry weight (g plant ⁻¹) in various plant parts of maize at	
	5-leaf stage grown in sand culture	41
2.11	1 Symptom of B deficiency of maize grown in sand culture without	

added B at anthesis.	44
2.12 Symptom of B deficiency of maize: white strips or transparent streaks	
on leaf lamina at anthesis grown in sand culture without added B	
compared with added B	44
2.13 Boron deficiency symptom of NS72: multiple ears (a) and small tassel (l	b) at
anthesis grown in sand culture	45
2.14 Anthers from B-deficient plant (B0): dead anthers (a)thin anthers (b)	
and normal plant (B20): normal anthers	45
3.1 Dry weight (g plant ⁻¹) of maize at vegetative growth (5-leaf stage, 20DAS) grown in sand culture	61
3.2 Dry weight (g plant ⁻¹) of plant parts at vegetative growth (40DAS, before tassel emergence) grown in sand culture	e 62
3.3 B concentration (mg B kg ⁻¹ DW) in plant parts at vegetative growth. (40DAS, before tassel emergence) grown in sand culture	63
3.4 B content (µg B plant ⁻¹) in plant parts at vegetative growth (40DAS, before tassel emergence) grown in sand culture	64
3.5 Dry weight (g plant ⁻¹) in parts of maize at early tassel emergence (63DA)	S)
a d a grown in sand culture 5 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m	65
3.6 B concentration (mg B kg ⁻¹ DW) in parts of maize at early tassel emergence (63DAS) grown in sand culture	rsity
3.7 B content (µg B plant ⁻¹) in parts of maize at early tassel emergence	e c
(63DAS) grown in sand culture	67
3.8 Boron deficiency symptom : white spot (a) at 27 DAS	
and white strips (b) at 40DAS	69

3.9 Multiple ears and short silks in B0 maize (a and c: removed husk)	
and normal ear in B20 (b and d: ear after removed husk) at anthesis	70
3.10 B deficiency symptom: transparent streak in 7-day old seedlings:	
(a) NS 72, (b) SC.	76
3.11 The relationship between B concentration in YEB (mg B kg ⁻¹)	
and shoot dry weight (g plant ⁻¹) of two maize genotypes grown in nutrient	
solution for 10 (H1) and 18 days (H2).	79
3.12 The relationship between root length (cm) and B in nutrient solution	81
3.13 The relationship between root length (cm) and whole plant (total+ root)	
dry weight (g plant ⁻¹) of two maize genotypes (cv. NS72 and SC) grown	
in nutrient solution for 10 (H1) and 18 days (H2).	82
3.14 The relationship between B uptake in shoot (µg B g ⁻¹ root DW)	
and B concentration in nutrient solution of two maize genotypes	
(cv.NS72 and SC) at day 10 (H1)	83
3.15 The relationship between relative shoot dry weight and B concentration	
in nutrient solution of two maize genotypes grown for 10-18 days (H2).	84
3.16 Relative growth rate (g 100g ⁻¹ day ⁻¹) of two maize genotypes grown in	
nutrient solution B) for 10 (H1) and 18 days (H2)	85
3.17 The relationship between relative shoot dry weight (dry weight of each	4.
B level divided at B1) and B concentration in nutrient solution of	lly
two maize genotypes (NS72 and SC) grown for 18 days (H2)	86
3.18 Effects of B on grain set in maize (cv. NS72): a) B20xB20; b) B0xB0;	
c) B20xB0 and d) B0xB20. Female (\circlearrowleft) and male (\circlearrowleft) is silk and pollen	
respectively. B+ is represented B-sufficiency plant (B20) and B0 is	

I	B-deficient plant.	88
3.19 S	EM showed a silk from the upper (a=B0 and b=B20) and lower part	
(0	c=B0 and d=B20) of young ear at anthesis stage	92
3.20	Cross section of silk tip from top of baby corn stained with	
I	PAS- TBO to indicate the accumulation of starch of B20-maize plant	93
3.21	Cross section of anthers stained with PAS to indicate the accumulation	
	of starch (arrow) in pollen grains and anther wall of B20-maize	
r	plant (a:B20) and the absence of starch in B-deficient maize plant	94
3.22	Cross section of connective tissue of anther stained with PAS	
l Za	nd TBO to indicate the accumulation of starch	95
3.23 P	Pollen stained with iodine staining solution	97
4.1 B	Boron concentration (mg B kg ⁻¹ DW) in plant parts of seven genotypes	
o	f maize at two levels of boron supply at the 5-leaf stage	115
4.2 F	Plant height (cm) of the seven genotypes of maize at two levels of B	
	supply at the 5-leaf stage	118
4.3	Dry weight (g plant ⁻¹) in plant parts of seven genotypes of maize	
	at two levels of B supply at anthesis.	123
3 4.43	Dry weight (g plant ⁻¹) in plant parts of the seven genotypes of maize	71
Colonius	at two levels of B supply at anthesis	124
4.5	B concentration (mg B kg ⁻¹ DW) in tassel, flag leaf and ear leaf	sity
AII	of seven genotypes of maize at two levels of B supply at anthesis	126
4.6	B concentration (mg B kg ⁻¹ DW) in silks, pollen grains and baby	
	corn of seven genotypes of maize at two levels of B supply at anthesis	127
4.7	B concentration (mg B kg ⁻¹ DW) in shoot of the seven genotypes	

		of maize at two levels of B supply at anthesis	128
	4.8	B content (μg B plant ⁻¹) in tassel, ear leaf and root of the seven	
		genotypes of maize at two levels of B supply at anthesis	130
	4.9	B content (μg B plant ⁻¹) in baby corn of the seven genotypes	
		of maize at two levels of B supply at anthesis	131
	4.10	Total B uptake (shoot+ root: µg B g ⁻¹ root dry weight) of the seven	
		genotypes of maize at two levels of B supply at anthesis	134
	4.11	Silk number (silk ear ⁻¹) of the seven genotypes of maize at two	
		levels of B supply at anthesis	138
	4.12	Plant height (cm) and leaf number (leaf plant ⁻¹) of the seven genotypes	
		of maize at two levels of B supply at anthesis	139
	4.13	B deficiency symptom in ear of three maize genotypes as multiple ears	140
	4.14	Straw dry weight (g plant ⁻¹) of the seven genotypes of maize at two	
		levels of B supply at anthesis	146
	4.15	Root dry weight (g plant ⁻¹) of the seven genotypes of maize at two	
		levels of B supply at anthesis	147
	4.16	Boron concentration (mg B kg ⁻¹) in husk, straw and root of the seven	
a	Jä	genotypes of maize at two levels of B supply at anthesis	148
C_0	4.17	The relationship between B concentration (mg B kg ⁻¹ DW) in silk,	ity
A	יעקי ווו	pollen and relative grain yield of all seven genotypes of maize at two	ıty
A		levels of B supply at anthesis	150
	4.18	The relationship between B concentration (mg B kg ⁻¹ DW) in tassel,	
		flag leaf and ear leaf and grain number (grain number ear-1) of the	
		seven genotypes of maize at two levels of B supply at anthesis	151

4.19 B deficiency symptom in ear of maize (c: Pioneer, d: NS72) and

normal ear (a: Pioneer; b:NS72)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved