Table of Contents

Table of Contents	
	Page
Acknowledgements	iii
Abstract (Thai)	iv
Abstract (English)	vii
Table of Contents	5x3
List of Tables	xvii
List of Figures	xxx
Abbreviations and Symbols	xxxvi
Chapter 1 Introduction	1
Chapter 2 Literature Review	
2.1 Enzymatic digestion	7
2.2 Present Situation of Ethanol Production	9
2.3 Growth Phase of Ethanol Producing Microbes	12
2.4 Pyruvate Decarboxylase	14
2.5 Phenylacetylcarbinol (PAC)	o 16 NVEYSIT
2.6 Production of Ethanol and Phenylacetylcarbinol	
from Dried Longan Extract	

2.6.1	Selection of Sugars and Protein extraction methods	
	from dried longan flesh aged 1.5 years	17
2.6.2	Selection of the Suitable Time for Seed Cultivation	18
2.6.3	Selection of the Highest Ethanol Producing Microbe	
	Using 6 Months Old Dried Longan Flesh	19
2.6.4	Selection of the Highest Ethanol Producing Microbe	
	Using 6 Years Old Dried Longan Flesh	20
2.6.5	Ethanol Production of three C. utilis from	
	Dried Longan Extract and Molasses in Various Ratio	21
2.6.6	Cultivation of Ethanol Producing Microbes	
	in the Aerated Condition	22
2.6.7	Effect of Inoculums Concentration Levels on Growth and	
	Ethanol Production Kinetics of S. cerevisiae TISTR 5606	23
2.6.8	The Growth and Ethanol Production Kinetics of	
	S. cerevisiae TISTR 5606 were Studied in 1,000,	
	1,500, and 5,000 ml Scale under Static Condition	
	2.6.8.1 S. cerevisiae	24
	2.5.8.2 <i>C. utilis</i>	27

2.6	7.9 The Development of Mathematical Model for	
	Ethanol Production from Three Types of Sugars	
	Commonly Found in Dried Longan Extract	29
2.6	5.10 Phenylacetylcarbinol Production	
	2.6.10.1 Phenylacetylcarbinol production in	
	static system for a single solvent system	31
	2.6.10.2 Phenylacetylcarbinol production in	
	static system for a two phase separated system	31
	2.6.10.3 Phenylacetylcarbinol production in shaking system	
	for a two phase separated system	33
	2.5.10.4 Phenylacetylcarbinol production in static system	
	for a two phase emulsion system	34
Chapter 3	Materials and Methods	
3.1 Ra	w Materials	41
3.2 Mie	croorganisms	41
3.3 Ch	emicals and Enzymes	42
3.4 Cu	ltivation Media	
3.4 Copyright 3.4	.1 Dried longan extract	45
3.4	2.2 Dried longan flesh with low sugar level	45

45
43
45
46
49
51
5513
52
55
58
62
64
66
68

	4.1.2	Effects of Digestion Mixture Ratio		
		4.1.2.1 Specific Sucrose Consumption	71	
		4.1.2.2 Specific Glucose Production	75	
		4.1.2.3 Specific Fructose Production	79	
		4.1.2.4 Specific Total Sugars Production	83	
		4.1.2.5 Economical Specific Sugars Production	88	
4.2	Deterr	mination of Growth Kinetics		
	4.2.1	Total Soluble Solid (TSS)	109	
	4.2.2	OD600	111	
	4.2.3	pH level	112	
	4.2.4	Dried Biomass Concentration	114	
	4.2.5	Specific Growth Rate	116	
	4.2.6	Doubling Time	117	
	4.2.7	Sugars Decreasing	127	
	4.2.8	Ethanol Increasing	131	
4.3	Biotra	insformation of PAC		
	4.3.1	pH level	134	
	4.3.2	Volume ratio	138	
	4.3.3	PAC	141	
	4.3.4	Acetaldehyde	145	

4.3.5 Acetoin	148
4.3.6 Benzoic acid	148
4.3.7 Benzyl alcohol	148
4.3.8 Benzaldehyde	149
4.3.9 Pyruvate	160
Chapter 5 Conclusions and Future works	
5.1 Conclusions	170
5.2 Future works	172
Bibliography	173
Appendices	187
Appendix A	188
Appendix B	189
Appendix C	190
Appendix D	194
Appendix E	198
Appendix F	209
Appendix G	217
Appendix H	221
Appendix I OV Chiang Mai Uni	223
Appendix J	225

xvi Appendix K 227 Appendix L 233 Curriculum Vitae 235

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

List of Tables

	List of Tables	
Table		Page
2.1	Thai ethanol production capacity in 2009	11
2.2	Selection of sugars and protein extraction methods from	
	dried longan flesh aged 15 yrs	17
2.3	Selection of the suitable time for seed cultivation	18
2.4	Selection of the highest ethanol producing microbe	
	using 6 months old dried longan flesh	19
2.5	Selection of the highest ethanol producing microbe	
	using 6 years old dried longan flesh	20
2.6	Ethanol production from three <i>C. utilis</i> strains using	
	dried longan extract and molasses in various ratio as substrates	21
2.7	Cultivation of the ethanol producing microbes in aerated condition	22
2.8	Effect of inoculums concentration levels on growth and ethanol	
	production kinetics of S. cerevisiae TISTR 5606	23
2.9	The growth and ethanol production kinetics of	
	S. cerevisiae TISTR 5606	25
2.10	The growth and ethanol production kinetics of six <i>C. utilis</i> strains	27

2.11	The development of mathematical model for ethanol production	
	from three types of sugars commonly found in dried longan extract	30
2.12	Phenylacetylcarbinol production in a static condition for	
	a single solvent system	31
2.13	Phenylacetylcarbinol production in static system for	
	a two phases separated system	32
2.14	Phenylacetylcarbinol production in shaking system for	
	a two phases separated system	34
2.15	Phenylacetylcarbinol production in static system for	
	a two phases emulsion system	35
2.16	Phenylacetylcarbinol production in static system for	
	a two phase emulsion system with variation of carbon source	36
2.17	Phenylacetylcarbinol production for a two phases emulsion system	
	from whole cells of microbes with 10 months old dried longan extract	
	as a sole carbon source	37
2.18	PAC production for a two phases emulsion system from partially	
	purified PDC extracted of <i>C. utilis</i> UNSW 709400 with the aqueous phase contained various type of buffers	38
	phase contained various type of ouriers	36
2.19	PAC production for a two phases emulsion system from	
	resting cells of C. utilis UNSW 709400	39

2.20	PAC production for a two phases emulsion system from	
	whole cells and partially purified PDC of C. utilis UNSW 709400	40
2.21	PAC production for a two phases emulsion system from	
	whole cells of C. utilis UNSW 709400 with/without pH control	40
3.1	The list of chemicals and enzymes used	42
3.2	The list of equipment used	46
3.3	The enzyme activity	49
4.1	Specific sucrose consumption (g/g/L) after digested by three commercial	
	enzymes using the mass fraction of 0.17 and 0.33 g/g without/with a	
	pressurized steamer	59
4.2	Specific glucose production (g/g/L) after digested by three commercial	
	enzymes using the mass fraction of 0.17 and 0.33 g/g without/with a	
	pressurized steamer	63
4.3	Specific fructose production (g/g/L) after digestion by three commercial	
	enzymes using the mass fraction of 0.17 and 0.33 g/g without/with a	
	pressurized steamer	65
4.4	Specific total sugars production (g/g/L) after digestion by three	
	commercial enzymes using the mass fraction of 0.17 and 0.33 g/g	
	without/with a pressurized steamer	67
4.5	Economical specific sugar production (µg/baht/L) after digestion by	
	three commercial enzymes using the mass fraction of 0.17 and 0.33 g/g	
	without/with a pressurized steamer	69

4.6	Specific sucrose consumption $(g/g/l)$ for four dried longan flesh :	
	buffer ratios	72
4.7	Specific glucose consumption (g/g/l) for four dried longan flesh :	
	buffer ratios	76
4.8	Specific fructose consumption (g/g/l) for four dried longan flesh :	
	buffer ratios	80
4.9	Specific total sugars production $(g/g/l)$ for four dried longan flesh :	
	buffer ratios	85
4.10	Economical specific sugar production (µg/baht/l) for four	
	dried longan flesh: buffer ratios	89
4.11	The differences in TSS, OD600, and dried biomass (X)	
	concentration (g/l) levels between the final and initial cultivation	
	periods for 5,000 ml static cultivation in dried longan extract	
	using S. cerevisiae TISTR 5606 at 30°C for three conditions.	100
4.12	The differences in TSS, OD600, and dried biomass (X)	
	concentration (g/l) levels between the final and initial cultivation	
	periods for 5,000 ml static cultivation in dried longan extract	
	using C. utilis UNSW 709400 at 30°C for three conditions.	101 VAPSITV

4.13 The differences in TSS, OD600, and dried biomass (X) concentration (g/l) levels between the final and initial cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709700 at 30°C for three conditions.

102

The average pH level, average TSS decreasing rate (°Brix/h), average OD600 increasing rate (ODU/h), average dried biomass (X) concentration increasing rate (g/l/h), average specific growth rate (per h), and average doubling time (h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *S. cerevisiae* TISTR 5606 at 30°C for three conditions.

103

4.15 The average pH level, average TSS decreasing rate (°Brix/h), average OD600 increasing rate (ODU/h), average dried biomass (X) concentration increasing rate (g/l/h), average specific growth rate (per h), and average doubling time (h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709400 at 30°C for three conditions.

105

- 4.16 The average pH level, average TSS decreasing rate (°Brix/h), average OD600 increasing rate (ODU/h), average dried biomass (X) concentration increasing rate (g/l/h), average specific growth rate (per h), and average doubling time (h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709700 at 30°C for three conditions.
- 4.17 The maximum TSS decreasing rate (°Brix/h), maximum OD600 increasing rate (ODU/h), maximum dried biomass (X) concentration increasing rate (g/l/h), maximum specific growth rate (per h), and minimum doubling time (h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *S. cerevisiae* TISTR 5606 at 30°C for three conditions.
- 4.18 The maximum TSS decreasing rate (°Brix/h), maximum OD600 increasing rate (ODU/h), maximum dried biomass (X) concentration increasing rate (g/l/h), maximum specific growth rate (per h), and minimum doubling time (h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709400 at 30°C for three conditions.

- 4.19 The maximum TSS decreasing rate (°Brix/h), maximum OD600 increasing rate (ODU/h), maximum dried biomass (X) concentration increasing rate (g/l/h), maximum specific growth rate (per h), and minimum doubling time (h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709700 at 30°C for three conditions.
- 4.20 The differences in sugars concentration levels (g/l), ethanol concentration levels (g/l), lag time (h) between the final and initial cultivation periods, as well as ethanol yield (Y_{P/S}; g ethanol produced over g of all three sugars consumed for 5,000 ml static cultivation in dried longan extract using *S. cerevisiae* TISTR 5606 at 25.6°C for three conditions.
- 4.20 The differences in sugars concentration levels (g/l), ethanol concentration levels (g/l), lag time (h) between the final and initial cultivation periods, as well as ethanol yield (Y_{P/S}; g ethanol produced over g of all three sugars consumed for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709400 at 25.6°C for three conditions.

110

118

4.21 The differences in sugars concentration levels (g/l), ethanol concentration levels (g/l), lag time (h) between the final and initial cultivation periods, as well as ethanol yield (Y_{P/S}; g ethanol produced over g of all three sugars consumed for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709700 at 25.6°C for three conditions.

120

The average sugars consumption rate (g/l/h), average ethanol production rate (g/l/h), rate (g/l/h), average ethanol production rate (g/l/h), average specific rate of sugars consumption and production (Avg Q_s and Avg Q_p g/l/h), and average specific rate of ethanol production (Avg Q_p, g/l/h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *S. cerevisiae* TISTR 5606 at 25.6°C for three conditions.

121

4.24 The average sugars consumption rate (g/l/h), average ethanol production rate (g/l/h), rate (g/l/h), average ethanol production rate (g/l/h), average specific rate of sugars consumption and production (Avg Q_s and Avg Q_p g/l/h), and average specific rate of ethanol production (Avg Q_p, g/l/h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709400 at 25.6°C for three conditions.

ivers

4.25 The average sugars consumption rate (g/l/h), average ethanol production rate (g/l/h), average specific rate of sugars consumption and production (Avg Q_s and Avg Q_p g/l/h), and average specific rate of ethanol production (Avg Q_p , g/l/h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709700 at 25.6°C for three conditions.

123

4.26 The maximum sugars consumption rate (g/l/h), maximum ethanol production rate (g/l/h), maximum specific rate of sugars consumption and production (Max Q_s and Max Q_p g/l/h), and maximum specific rate of ethanol production (Max Q_p , g/l/h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *S. cerevisiae* TISTR 5606 at 25.6°C for three conditions.

124

4.27 The maximum sugars consumption rate (g/l/h), maximum ethanol production rate (g/l/h), maximum specific rate of sugars consumption and production (Max Q_s and Max Q_p g/l/h), and maximum specific rate of ethanol production (Max Q_p , g/l/h) during 60 h cultivation periods for 5,000 ml static cultivation in dried longan extract using *C. utilis* UNSW 709400 at 25.6°C for three conditions.

4.28	The maximum sugars consumption rate (g/l/h), maximum ethanol	
	production rate (g/l/h), maximum specific rate of sugars consumption	
	and production (Max Q_s and Max Q_p g/l/h), and maximum specific	
	rate of ethanol production (Max Q _p , g/l/h) during 60 h cultivation	
	periods for 5,000 ml static cultivation in dried longan extract	
	using C. utilis UNSW 709700 at 25.6°C for three conditions.	126
4.29	The statistical comparison of pH level for two phase PAC	
	biotransformation system using whole cells of S. cerevisiae	
	TISTR 5606, C. utilis UNSW 709400 and 709700.	137
4.30	The statistical comparison of volume ratio for two phase	
	PAC biotransformation system using whole cells of <i>S. cerevisiae</i>	
	TISTR 5606, C. utilis UNSW 709400 and 709700.	140
4.31	The statistical comparison of overall PAC concentration for	
	two phase PAC biotransformation system using whole cells of	
	S. cerevisiae TISTR 5606, C. utilis UNSW 709400 and 709700.	144
4.32	The statistical comparison of overall acetaldehyde concentration	
	for two phase PAC biotransformation system using whole cells of	
	S. cerevisiae TISTR 5606, C. utilis UNSW 709400 and 709700.	147

4.33	The banzaidenyde concentration in two phase PAC biotransformation	
	system prior to addition of whole cells of S. cerevisiae TISTR 5606,	
	C. utilis UNSW 709400 and 709700.	150
4.34	The statistical comparison of remnant benzaldehyde concentration	
	in aqueous phase for two phase PAC biotransformation system	
	using whole cells of S. cerevisiae TISTR 5606, C. utilis UNSW	
	709400 and 709700.	152
4.35	The statistical comparison of remnant benzaldehyde concentration	
	in organic phase for two phase PAC biotransformation system	
	using whole cells of S. cerevisiae TISTR 5606, C. utilis UNSW	
	709400 and 709700.	154
4.36	The statistical comparison of average consumed/unaccounted for	
	benzaldehyde concentration in both phases for two phase PAC	
	biotransformation system using whole cells of S. cerevisiae	
	TISTR 5606, C. utilis UNSW 709400 and 709700.	156
4.37	The statistical comparison of benzaldehyde balance (%) in two	
	phase PAC biotransformation system using whole cells of	
	S. cerevisiae TISTR 5606, C. utilis UNSW 709400 and 709700.	159

xxviii

4.38	The statistical comparison of remnant pyruvate concentration	
	in aqueous phase for two phase PAC biotransformation system	
	using whole cells of S. cerevisiae TISTR 5606, C. utilis UNSW	
	709400 and 709700.	162
4.39	The statistical comparison of remnant pyruvate concentration	
	in organic phase for two phase PAC biotransformation system	
	using whole cells of S. cerevisiae TISTR 5606, C. utilis UNSW	
	709400 and 709700.	164
4.40	The statistical comparison of consumed/unaccounted pyruvate	
	concentration in both phase for two phases PAC biotransfor-	
	mation system using whole cells of <i>S. cerevisiae</i> TISTR 5606,	
	C. utilis UNSW 709400 and 709700.	166
4.41	The statistical comparison of pyruvate balance (%) in two	
	phase PAC biotransformation system using whole cells of	
	S. cerevisiae TISTR 5606, C. utilis UNSW 709400 and 709700.	169
C.1	Cost for preparation of dried longan extract	189
C.2	Cost for application of portable pressure sterilizer	189
C.3	The utilization of natural gas	190
C.4	Cost of enzyme	190
C.5	Cost of enzyme for each case	191

C.6	Cost of dried longan	192
C.7	Cost of chemicals	192
F.1	Viable cell count (%) of S. cerevisiae TISTR 5606 in various	
	modes of propagation during preseed cultivation period	211
F.2	Viable cell count (%) of <i>C. utilis</i> UNSW 709400 in various	
	modes of propagation during preseed cultivation period	211
F.3	Viable cell count (%) of <i>C. utilis</i> UNSW 709700 in various	
	modes of propagation during preseed cultivation period	212
F.4	Viable cell count (%) of S. cerevisiae TISTR 5606 in various	
	modes of propagation during seed cultivation period	214
F.5	Viable cell count (%) of <i>C. utilis</i> UNSW 709400 in various	
	modes of propagation during seed cultivation period	214
F.6	Viable cell count (%) of <i>C. utilis</i> UNSW 709700 in various	
	modes of propagation during seed cultivation period	215

List of Figures

		List of Figures	
F	Figure		Page
	1.1	Weight ratio (%) of exported longan comparing with	
		fresh longan weight in 2008 – 2010	2
1	1.2	Summary of research direction to be use dried longan to advantages	4
50.99	1.3	Biotransformation of benzaldehyde and pyruvate into	
		phenylacetylcarbinol	5
2	2.1	lpha - amylase activity	7
2	2.2	Carbohydrase activity	8
2	2.3	Endo – 1,4 – β – xylanase activity	8
2	2.4	Ethanol production from pyruvate decarboxylase enzyme	14
2	2.5	A complete ribbon drawing of PDC tetramer	15
2	2.6	Production of phenylacetylcarbinol and by – products from	
		pyruvate decarboxylase enzyme	16
avan	3.1	Aerated fed batch system for cultivation of microbes	53
	3.2	The biotransformation bottle was placed in a rotary tumbler	
		mixer at 250 rpm, 8°C for 72 h	56 .

4.1	Specific sugars consumption/production after digestion	
	by three commercial enzymes and control using the mass	
	fraction of 0.17 g/g and 0.33 g/g without/with a pressurized steamer.	60
4.2	Economical specific sugar production (μg/baht/L) after	
	digestion by three commercial enzymes using the mass fraction	
	of 0.17 and 0.33 g/g without/with a pressurized steamer.	70
4.3	Specific sucrose consumption (g/g/l) for the digestion with	
	the dried longan flesh powder to four acetic acid solution/sodium	
	hydroxide solution ratio with the digestive solution consisting	
	of 0.5, 1.0, 1.5, and 2.0% acetic acid solution and 0.1%(w/v)	
	sodium hydroxide solution at 1:2, 1:1, and 2:1 ratio.	73
4.4	Specific glucose production (g/g/l) for the digestion with	
	the dried longan flesh powder to four acetic acid solution/sodium	
	hydroxide solution ratio with the digestive solution consisting	
	of 0.5, 1.0, 1.5, and 2.0% acetic acid solution and 0.1%(w/v)	
	sodium hydroxide solution at 1:2, 1:1, and 2:1 ratio.	77

4.5	Specific fructose production $(g/g/I)$ for the digestion with	
	the dried longan flesh powder to four acetic acid solution/sodium	
	hydroxide solution ratio with the digestive solution consisting	
	of 0.5, 1.0, 1.5, and 2.0% acetic acid solution and 0.1%(w/v)	
	sodium hydroxide solution at 1:2, 1:1, and 2:1 ratio.	81
4.6	Specific total sugars production (g/g/l) for the digestion with	
	the dried longan flesh powder to four acetic acid solution/sodium	
	hydroxide solution ratio with the digestive solution consisting	
	of 0.5, 1.0, 1.5, and 2.0% acetic acid solution and 0.1%(w/v)	
	sodium hydroxide solution at 1:2, 1:1, and 2:1 ratio.	86
4.7	Economical specific sugar production (μg/baht/l) for the digestion	
	with the dried longan flesh powder to four acetic acid solution/	
	sodium hydroxide solution ratio with the digestive solution	
	consisting of 0.5, 1.0, 1.5, and 2.0% acetic acid solution and	
	0.1%(w/v) sodium hydroxide solution at 1:2, 1:1, and 2:1 ratio.	90
4.8	Growth kinetics of S. cerevisiae TISTR 5606 in fed batch system	
	which utilized DLE medium in batch stage for 48 h before feeding	

of DLE medium for the next 24 h during 60 h cultivation period in a static condition at 30°C.

xxxiii

4.9	Growth kinetics of S. cerevisiae TISTR 5606 in fed batch system	
	which utilized DLE medium in batch stage for 48 h before feeding	
	of DDLFH medium for the next 24 h during 60 h cultivation period	
	in a static condition at 30°C.	95
4.10	Growth kinetics of <i>C. utilis</i> UNSW 709400 in fed batch system	
	which utilized DLE medium in batch stage for 48 h before feeding	
	of DLE medium for the next 24 h during 60 h cultivation period in	
	a static condition at 30°C.	96
4.11	Growth kinetics of <i>C. utilis</i> UNSW 709400 in fed batch system	
	which utilized DLE medium in batch stage for 48 h before feeding	
	of DDLFH medium for the next 24 h during 60 h cultivation period	
	in a static condition at 30°C.	97
4.12	Growth kinetics of <i>C. utilis</i> UNSW 709700 in fed batch system	
	which utilized DLE medium in batch stage for 48 h before feeding	
	of DLE medium for the next 24 h during 60 h cultivation period in	
	a static condition at 30°C.	98
4.13	Growth kinetics of <i>C. utilis</i> UNSW 709700 in fed batch system	
	which utilized DLE medium in batch stage for 48 h before feeding	
	of DDLFH medium for the next 24 h during 60 h cultivation period	
	in a static condition at 30°C.	99

xxxiv

4.14	The pH level in both phases after 72 h biotransformation	136
4.15	The volume ratio in both phases after 72 h biotransformation	139
4.16	The overall PAC concentration (mM) in both phases after 72 h	
	Biotransformation	143
4.17	The overall acetaldehyde concentration (mM) in both phases	
	after 72 h biotransformation	146
4.18	The remnant benzaldehyde concentration (mM) in aqueous phase	
	after 72 h biotransformation	151
4.19	The remnant benzaldehyde concentration (mM) in organic phase	
	after 72 h biotransformation	153
4.20	The consumed/unaccounted benzaldehyde concentration (mM)	
	in both phases after 72 h biotransformation	155
4.21	The average benzaldehyde balance (%) in both phases	
	after 72 h biotransformation	158
4.22	The remnant pyruvate concentration (mM) in aqueous phases	
	after 72 h biotransformation	161
4.23	The remnant pyruvate concentration (mM) in organic phases	
	after 72 h biotransformation	163
4.24	The overall consumed/unaccounted pyruvate concentration (mM)	
	in both phases after 72 h biotransformation	165

4.25	The average pyruvate balance (%) in both phases after 72 h	
	biotransformation	168
D.1	Correlation curve between dried biomass concentration and	
	optical density at 600 nm for S. cerevisiae TISTR 5606	195
D.2	Correlation curve between dried biomass concentration and	
	optical density at 600 nm for C. utilis UNSW 709400	195
D.3	Correlation curve between dried biomass concentration and	
	optical density at 600 nm for C. utilis UNSW 709700	196
G.1	Chromatogram of sucrose, glucose, fructose, acetic acid,	
	and ethanol	217
G.2	Standard curve for sucrose	217
G.3	Standard curve for glucose	218
G.4	Standard curve for fructose	218
G.5	Standard curve for acetic acid	219
G.6	Standard curve for ethanol	219
H.1	Chromatogram of PAC, benzoic acid, and bemzaldehyde	221

ABBREVIATIONS AND SYMBOLS

°Brix degree Brix

°Brix/h degree Brix per hour

Baht/g baht per gram

Baht/l baht per liter

Baht/kg baht per kilogram

°C degree Celcius

cm centimeter

DDLFH digested dried longan flesh

hydrolysate

DLE dried longan extract

FBG fungal beta-glucanase unit

FXU fungal xylanase unit

g gram

g/g g enzyme/g dried longan flesh

powder

g/l g sugar/g enzyme/liter mixture

l gram per liter

g/l/h gram per liter per hour

xxxvii

hour(s) h per hour kilogram kg kNU kilo – Novo α -amylase unit liter 1 M molar min minute milliliter ml milliliter per minute ml/min mililite per micromole centimeter $ml/\mu mol \cdot cm$ millimeter mm millimole per mole mmol/mol millimolar mM month nm nanometer ODU optical density unit ODU/h optical density unit per hour pound-force per square inch revolutions per minute

unit per milligram

rpm

xxxviii

volume per volume v/vweight per volume μg/baht/L μg sugar/baht/L mixture microliter μl micrometer μm yrs years % percent

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved