CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusion

The optimal digestion procedure was the simultaneous addition of all three enzymes. The highest specific sugar production level (p \leq 0.05) was obtained when 100 kNU, 25 FBG and 500 FXU, respectively either with or without pressurized steamer was employed (10.72 \pm 0.10 and 10.70 \pm 0.04 g sugar/g enzyme/l, respectively). The implementation of all three enzymes at the same time without application of the pressurized steamer was the most economical statistically (p \leq 0.05) (1,097 \pm 10 μ g/baht/l) which was higher than the situation where the pressurized steamer was employed by 3.3 folds.

The digestion condition with the dried longan flesh powder to acetic acid solution/sodium hydroxide solution ratio at 2:10 using of 2%(w/v) acetic acid solution and 0.1%(w/v) sodium hydroxide solution at 1:1 ratio resulted in the maximum increase of specific sugar production level (p \leq 0.05) of 11.33 \pm 0.01 g/g/l and the most commercially viable (p \leq 0.05) (1,159 \pm 47 µg/baht/l) in comparison with the other conditions.

S. cerevisiae TISTR 5606 could produce the highest level of dried biomass concentration (7.04 \pm 0.07 g/l), consume the highest amount of sugars (82.9 \pm 2.0, 33.0 \pm 0.8 and 38.0 \pm 0.7 g/l for sucrose, glucose and fructose, respectively), and produce the highest level of ethanol production at 61.9 \pm 5.5 g/l with the ethanol yield of 0.40 \pm 0.04 g ethanol/ g sugars consumed in batch system. Fed batch system illustrated the toxicity of DDLFH medium in comparison to DLE medium. DDLFH medium feeding had a slower increasing trend of ethanol production than its counterpart.

The whole cells of *S. cerevisiae* TISTR 5606 in the condition of batch cultivation with DLE at 48th h fermentation period could produce the highest overall concentration of PAC in both phases at 15.6 ± 0.5 mM. However, the certain lost/undetected concentration of substrate benzaldehyde was observed. This might be due to the absorption by cells and formation of the benzaldehyde-cells suspension between the interfacial layer of aqueous/organic phase in the system which generated a relatively smaller amount of PAC.

5.2 Future works

- 5.2.1 The decreased xylan and/or cellulose concentrations in enzymatic digestion experiment should be determined to account for the source of additional sugar concentrations.
- 5.2.2 The fed batch cultivation period should be prolonged for the additional period of 24 h with another round of aeration to improve the ethanol production for both *S. cerevisiae* and *C. utilis*.
- 5.2.3 The furan, furfural and HMF should also be determined by HPLC to account for the level of inhibitory substance in the medium.
- 5.2.4 The whole cells of *C. utilis* UNSW 709400 and 709700 should be cultivated in the conditions that induce high level of ethanol production for later examination of PAC production from the harvested whole cells PDC.
- 5.2.5 PAC biotransformation system could be improved by decreasing volume ratio of organic to aqueous phase with increasing temperature to 20 21 °C to facilitate the higher level of PAC production with smaller organic phase volume as well as to increase production rate and to curtail the cooling cost.
- 5.2.6 The utilization of MOPS and DPG and further detailed study should be investigated to rectify the benzaldehyde loss problem so that the benzaldehyde balance could be improved.