TABLE OF CONTENTS

	PAGE
ACKNOWNLEDGEMENT	III
ABSTRACT	ΙV
TABLE OF CONTENTS	X
LIST OF TABLES	XV
LIST OF FIGURES	XVI
ABBRIVIATIONS	XVIII
I. INTRODUCTION	1
1.1 Statement and significance of problem	1
1.2 Literature reviews	5
1.2.1 Plasma proteins	5
1.2.2 Some physical properties of proteins	6
1.2.2.1 Proteins lose their biological activities when their higher	
order structures are destroyed	6
1.2.2.2 The solubility of protein varies with salt concentration, pH,	
temperature, ionic strength and dielectric constant	9
1.2.3 Hemostasis overview	12
1.2.4 The coagulation proteins	19
1.2.5 The coagulation factors	20
1.2.6 Coagulation cascade	26
1.2.6.1 Intrinsic coagulation Pathway	26
1.2.6.2 Extrinsic coagulation Pathway	28
1.2.6.3 Common coagulation Pathway	28
1.2.7 Fibrinolysis	29

1.2.8 Inhibitors of coagulation and fibrinolysis	33
1.2.8.1 Naturally occurring inhibitors of coagulation	33
1.2.8.2 Naturally occurring inhibitors of fibrinolysis	38
1.2.8.3 Synthetic inhibitors of coagulation (anticoagulant drugs)	39
1.2.8.4 Synthetic inhibitors of fibrinolysis (antifibrinolytic agents)	39
1.2.9 Fibrinogen	40
1.2.10 Thrombin	45
1.2.11 Historical perspective of fibrin glue	47
1.2.12 Production method of alternatives to commercial fibrin glue	49
1.2.13 Historical perspective of thrombin preparation	51
1.3 Objectives	52
II. METERIALS AND METHODS	53
A. Plasma preparation	53
B. Methods	53
PARTI	53
1. Fibrinogen preparation	53
1.1 Fibrinogen preparation by cryoprecipitation	53
1.2 Fibrinogen preparation by repeat cryoprecipitation	53
1.3 Fibrinogen preparation by saturated ammonium sulfate	
precipitation	54
1.4 Fibrinogen preparation by saturated ammonium sulfate	
precipitation and followed by cryoprecipitation	54
1.5 Fibrinogen preparation by absolute ethanol precipitation	55
1.6 Fibrinogen preparation by absolute ethanol precipitation	
and followed by cryoprecipitation	55

1./ Fibrinogen preparation by 10% ethanol precipitation	55
1.8 Fibrinogen preparation by 10% ethanol precipitation and	
followed by cryoprecipitation	56
1.9 Fibrinogen preparation by polyethylene glycol precipitation	56
1.10 Fibrinogen preparation by polyethylene glycol precipitation	57
and followed by cryoprecipitation	
2. Determination of protein	57
3. Determination of albumin	58
4. Determination of fibrinogen concentration	58
4.1 Modified thrombin time method	58
4.2 Ratnoff's method	60
5. Determination of the quality of fibrinogen	61
6. Determination of the quantity and quality of factor XIII	61
7. Thrombin preparation	63
8. Selection an appropriate method for fibrinogen and thrombin	
preparation	65
9. Fibrinogen and thrombin preparation in lyophilized form	65
PART II	66
1. Composition of prepared fibrin glue	66
2. Determination of the stability of fibrin glue	67
3. Determination of adhesive strength of fibrin glue	68
4. Determination of the elasticity of fibrin glue	75
5. Comparisons of fibrin glue of the present study with Thai	
Red Cross Society preparation	76

III. RESULTS	77
PART I	77
1. Fibrinogen preparation	77
2. Determination of protein	77
3. Determination of albumin	78
4. Determination of fibrinogen concentration	81
4.1 Modified thrombin time method	81
4.2 Ratnoff's method	84
5. Determination of the quality of fibrinogen	86
6. Determination of the quantity and quality of factor XIII	88
7. Thrombin preparation	89
8. Selection an appropriate method for fibrinogen and thrombin	
preparation	93
9. Fibrinogen and thrombin preparation in lyophilized form	93
PARTII	94
1. Composition of prepared fibrin glue	94
2. Determination of the stability of fibrin glue	94
3. Determination of adhesive strength of fibrin glue	98
4. Determination of the elasticity of fibrin glue	100
5. Comparisons of fibrin glue of the present study with Thai Red	
Cross Society preparation	100

	Comparison of cost efficacy of fibrin glue in this present	
	study and fibrin glue from Thai Red Cross Society	104
IV.	DISCUSSION	105
V.	SUMMARY	113
VI.	REFERENCE	115
VII.	APPENDIX	120
VIII.	. CIRRICULUM VITAE	124

LIST OF TABLES

ГАВ	LE	PAGE
1.	Characteristics of clotting factors	22
2.	Properties of the coagulation factors	23
3.	Naturally occurring inhibitors of the coagulation and fibrinolysis	34
4.	Urea solubility test (by adding 0.025 M CaCl ₂)	90
5.	Urea solubility test (by adding 5 NIH units/ml thrombin)	91
6.	Thrombin time derived from thrombin solution prepared by	
	previous precipitating agents in several dilutions	92
7.	The stability of fibrin glue from fibrinogen prepared by	
	cryoprecipitation	95
8.	The stability of fibrin glue from fibrinogen prepared by	
	repeat cryoprecipitation	96
9.	The stability of fibrin glue from fibrinogen prepared by	
	Thai Red Cross Society	97
10.	Comparison of fibrinogen concentration in prepared cryoprecipitate	
	and repeat cryoprecipitate by the present study with cryoprecipitate	
	prepared by Thai Red Cross Society	102
11.	Comparison of stability, elasticity and adhesive strength of fibrin	
	glue preparation of the present study with Thai Red Cross Society	103

LIST OF FIGURES

FIGURE	PAGE
1. Cleavage of disulfide bonds by reducing or oxidizing agents	8
2. Effects of salt and pH on protein solubility	11
3. Intrinsic initiation	15
4. Extrinsic initiation	16
5. Common pathway	18
6. The factor VIII molecule (VIII/vWF) is a polymer with multiple	
subunits composed of vWF (vWF:Ag) connected to a small	
coagulation unit known as VIII:C	25
7. The proposed structure of fibrinogen based on low-resolution	
structural studies, primary structure determinations, and chain-folding	
predictions. The so-called disulfide rings are regions containing	
three disulfide bonds cyclically linking homologous segments of the	
α , β , and γ chains. N-linked polysaccharides are represented by	
filled hexagons. The Arg-cleaved by thrombin in fibrin activation	
are indicated.	31
8. Degradation of fibrin by plasmin. P indicates sites where plasmin	
cleaves fibrin polymer, fibrin strands, and various complexes.	32
9. Diagrammatic representation of fibrinogen, its $(A\alpha B\beta \gamma)_2$ structure,	
charge termini, and the sites of thrombin cleavage (arrows) of four	•
Arg-Gly peptide bonds.	43
10. The transamidation reaction forming the isopeptide bonds cross-	
Linking fibrin monomers in "hard" clots as catalyzed by activated	
fibrin stabilizing factor (FSF, XIIIa).	44

11. The schematic diagram of human prothrombin showing the peptide	
bonds that are cleaved by factor Xa to form thrombin. The N-terminal	
propeptide, which consists of a Gla domain and two tandem	
kringle domains, is released in this activation process, whereas	
thrombin's A and B peptides remained linked by one of the	
protein's several disulfide bonds. Thrombin then automatically	
excises the A peptide's N-terminal 13 residues.	46
12. MC-1 Apparatus	70
13. STAND of MC-1 Apparatus	71
14. TOP of MC-1 Apparatus	72
15. BOTTOM of MC-1 Apparatus	73
16. S-shaped wire (left) and weights (right) of MC-1 Apparatus	74
17. Protein in plasma and all of fibrinogen solutions	79
18. Albumin in plasma and all of fibrinogen solutions	80
19. Fibrinogen calibration curve (modified thrombin time method)	82
20. Fibrinogen in plasma and all of fibrinogen solutions by modified	
thrombin time method	83
21. Fibrinogen in plasma and all of fibrinogen solutions by Ratnoff's	
method	85
22. Thrombin time of fibrinogen in plasma and all of fibrinogen solution	87
23. Adhesive strength of fibrin glue	99

ABBREVIATIONS

% Percent

α Alpha

β Beta

γ Gamma

ε Epsilon

μl Microliter

(NH₄)₂SO₄ Ammonium sulfate

Arg Arginine

Asn Asparagine

Asp Aspartate

CaCl₂ Calcium chloride

CPD Citrate-phosphate-dextrose

EACA Epsilon (ε)-aminocaproic acid

fig. Figure

g/cm² Gram per cubic millimeter

g/dl Gram per deciliter

Gla γ-Carboxyl glutamate

Gln Glutamine

Gly Glycine

His Histidine

Ile Isoleucine

kD Kilodalton

M Molar

mg/dl Milligram per deciliter

ml Milliliter

mm Millimeter

mmol Millimole

MW Molecular weight

nm Nanometer

°C Degree Celsius

pl Isoelectric point

Pro Proline

rpm Round per minute

SD Standard deviation

Thr Threonine