### TABLE OF CONTENTS

| CONTENT                                        | PAGE   |
|------------------------------------------------|--------|
| ACKNOWNLEDGEMENT                               | iti    |
| ABSTRACT (ENGLISH)                             | v      |
| ABSTRACT (THAI)                                | viii   |
| LIST OF TABLES                                 | XV     |
| LIST OF FIGURES                                | xvi    |
| ABBREVIATIONS                                  | xix    |
| CHAPTER I INTRODUCTION                         |        |
| 1.1. Statement and significance of the problem | 1      |
| 1.2. Literature reviews                        | 5      |
| 1.2.1. Structure and function of hemoglobin    | 5      |
| 1.2.2. Hemoglobin synthesis and oxygen binding | 8      |
| 1.2.3. Developmental change in hemoglobin      |        |
| 1.2.4. Thalassemia                             | 15 511 |
| 1.2.4.1. Introduction to thalassemia syndromes | 15     |
| 1.2.4.2. Alpha thalassemia                     | 17     |
| 1.2.4.3. Hemoglobin Bart's hydrops fetalis     | 22     |

| 1.2.4.4. Laboratory diagnosis of thalassemia                | 25 |
|-------------------------------------------------------------|----|
| 1.2.4.5. Laboratory investigation for $\alpha$ -thalassemia | 26 |
| 1.2.5. Monoclonal antibody                                  | 28 |
| 1.2.5.1. Hybridoma technique                                | 28 |
| 1.2.5.2. Thalassemia diagnosis by immunological method      | 33 |
| 1.3. Objectives                                             | 34 |
|                                                             |    |
| CHAPTER II MATERIALS AND METHODS                            |    |
| 2.1. Materials                                              | 35 |
| 2.1.1. Human blood samples                                  | 35 |
| 2.1.2. Animal blood samples                                 | 35 |
| 2.1.3. Mouse                                                | 35 |
| 2.1.4. Cell fusions                                         | 36 |
| 2.1.5. Chemicals                                            | 36 |
| 2.2. Methods                                                | 36 |
| 2.2.1. Preparation of hemolysates for monoclonal antibody   | 36 |
| production                                                  |    |
| 2.2.2. Purification of hemoglobins                          | 37 |
| 2.2.2.1. Purification of hemoglobin Bart's and Hb Portland  | 37 |
| 2.2.2.2. Purification of hemoglobin A, A2, E and F          | 38 |
| 2.2.3. Measurement of isolated hemoglobin concentration     | 39 |
| 2.2.4. Identification of hemoglobin by cellulose acetate    | 40 |
| electrophoresis                                             |    |

| 2.2.5. Production of monoclonal antibodies                    | 40 |
|---------------------------------------------------------------|----|
| 2.2.5.1. Mouse immunization with Hb Bart's hydrops            | 40 |
| fetalis hemolysate                                            |    |
| 2.2.5.2. Mouse immunization with purified hemoglobin          | 41 |
| Portland                                                      |    |
| 2.2.5.3. Indirect ELISA for detection of polyclonal           | 41 |
| antibodies against hemoglobins                                |    |
| 2.2.5.4. Hybridoma technique                                  | 42 |
| 2.2.5.5. Single cell cloning by limiting dilution             | 43 |
| 2.2.6. Isotyping of monoclonal antibodies                     | 44 |
| 2.2.7. Study of the specificity of monoclonal antibodies      | 44 |
| with different hemolysates                                    |    |
| 2.2.8. Study of the specificity of monoclonal antibodies      | 45 |
| with purified hemoglobins                                     |    |
| 2.2.9. Study of the cross reactivity of monoclonal antibodies | 45 |
| between human and other animal hemoglobins                    |    |
| 2.2.10. Study of the specificity of monoclonal antibodies     | 46 |
| with various globin chains by Western blot analysis           |    |
| 2.2.11. Large scale production of monoclonal antibodies and   | 47 |
| purification of monoclonal antibodies                         |    |

#### **CHAPTER III RESULTS**

| 3.1. Preparation of normal, cord blood and Bart's hydrops fetalis  | 49 |
|--------------------------------------------------------------------|----|
| hemolysates                                                        |    |
| 3.2. Purification of hemoglobin Bart's and Hb Portland             | 49 |
| 3.3. Purification of hemoglobin A, A <sub>2</sub> , F and Hb E     | 53 |
| by DEAE Sepharose column chromatography                            |    |
| 3.4. Production of monoclonal antibodies against hemoglobin Bart's | 55 |
| and Hb Portland                                                    |    |
| 3.4.1. Antibody responses in BALB/c mice after immunizations       | 55 |
| with Bart's hydrops fetalis hemolysate                             |    |
| 3.4.2. Antibody responses in BALB/c mouse after immunizations      | 55 |
| with purified hemoglobin Portland                                  |    |
| 3.4.3. Production of monoclonal antibodies                         | 58 |
| 3.5. Isotyping of monoclonal antibodies                            | 62 |
| 3.6. Study of the specificity of monoclonal antibodies             | 62 |
| by using different hemolysates                                     |    |
| 3.7. Study of the specificity of monoclonal antibodies             | 65 |
| using purified hemoglobins                                         |    |
| 3.8. Study of the cross reactivity of monoclonal antibodies        | 65 |
| between human and animal hemoglobins                               |    |

| 3.9. Large scale production of monoclonal antibodies          | 68  |
|---------------------------------------------------------------|-----|
| and purification of mAbs                                      |     |
| 3.10. Study of the specificity of monoclonal antibodies using | 70  |
| various globin chains by Western blotting analysis            |     |
| CHAPTER IV DISCUSSIONS                                        | 76  |
| CHAPTER V CONCLUSION                                          | 86  |
| REFERENCES                                                    | 88  |
| APPENDIX A                                                    | 101 |
| APPENDIX B                                                    | 108 |
| CURRICULUM VITAE                                              | 125 |
|                                                               |     |
|                                                               |     |
|                                                               |     |
|                                                               |     |
|                                                               |     |

# ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

#### LIST OF TABLES

| TABI | E S                                                                | PAGE |
|------|--------------------------------------------------------------------|------|
| 1.1. | Examples of non-deletion mutants that cause                        | 21   |
|      | lpha—thalassemia                                                   |      |
| 2.1. | Eluting buffer gradients for each hemolysate                       | 38   |
| 3.1. | The reactivity of hybridoma clones obtained from                   | 60   |
|      | the 1 <sup>st</sup> and 2 <sup>nd</sup> fusion                     |      |
| 3.2. | The reactivity of hybridoma clones from the 3 <sup>rd</sup> fusion | 61   |
| A-1  | Lists of chemicals used in this study                              | 101  |

## ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

### LIST OF FIGURES

| FIGU  | RE                                                                    | PAGE |
|-------|-----------------------------------------------------------------------|------|
| 1.1.  | Function of hemoglobin                                                | 5    |
| 1.2.  | Molecular structure of hemoglobin                                     | 27   |
| 1.3.  | The chromosome of $\alpha$ and $\beta$ globin genes family            | 7    |
| 1.4.  | $\alpha$ and $\beta$ globin genes in diploid cell                     | 8    |
| 1.5.  | Hemoglobin synthesis in the developing red cell                       | 10   |
| 1.6.  | Molecular structure of heme                                           | 11   |
| 1.7.  | Hemoglobin oxygen dissociation curve                                  | 12   |
| 1.8.  | Developemental change in globin chains and                            | 14   |
|       | production organs from fetus to adult                                 |      |
| 1.9.  | Incidence of thalassemia syndrome worldwide                           | 16   |
| 1.10. | A summary of major deletion in the $\alpha$ globin gene cluster       | 19   |
| 1.11. | Hb Bart's hydrops fetalis                                             | 24   |
| 1.12. | Blood smear of Hb Bart's hydrops fetalis                              | 24   |
| 1.13. | Simplified flow chart base on the MCH, Hb A <sub>2</sub> , Hb F value | 26   |
|       | and DNA analysis for screening of thalassemia carriers                |      |

| 1.14. | Metabolic pathway relevant to hybridoma selection in medium        | 30 |
|-------|--------------------------------------------------------------------|----|
|       | containing hypoxanthine, aminopterin and thymidine                 |    |
|       | (HAT medium)                                                       |    |
| 1.15. | Production of hybridomas                                           | 32 |
| 3.1.  | Analysis of normal adult, cord blood and Bart's hydrops            | 51 |
|       | fetalis hemolysate by cellulose acetate electrophoresis            |    |
| 3.2.  | Cellulose acetate electrophoresis analysis of                      | 52 |
|       | the purified Hb Bart's and Hb Portland                             |    |
| 3.3.  | Cellulose acetate electrophoresis analysis of                      | 54 |
|       | purified hemoglobin A, A <sub>2</sub> , E and F                    |    |
| 3.4.  | Antibody responses of mice immunized with                          | 56 |
|       | Bart's hydrops fetalis hemolysate                                  |    |
| 3.5.  | Antibody responses of mouse immunized with                         | 57 |
|       | purified hemoglobin Portland                                       |    |
| 3.6.  | Immunoglobulin isotype of the generated monoclonal antibodies      | 63 |
| 3.7.  | Characterization of the specificity of mAbs using three difference | 64 |
|       | hemolysates                                                        |    |
| 3.8.  | Characterization of the specificity of mAbs                        | 66 |
|       | using various purified hemoglobins                                 |    |
| 3.9.  | Cross reactivity of mAbs between human and animal hemolysates      | 67 |
| 3.10. | SDS-PAGE analysis of the purified mAb HB1 and Thal-PL1             | 69 |
| 3.11. | Globin chain analysis by Urea Acid Triton X-100                    | 72 |
|       | polyacrylamide gel (TAU-PAGE)                                      |    |

| 3.12. | Nitrocellulose membrane after blotting with       | 73 |
|-------|---------------------------------------------------|----|
|       | TAU-polyacrylamide gel                            |    |
| 3.13. | Western blot analysis of mAb HB1 and Thal-PL1     | 74 |
| 3.14. | The image overlay between nitrocellulose membrane | 75 |
|       | and the western blot x-ray film                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |
|       |                                                   |    |

# auansuraneurautaulku Copyright © by Chiang Mai University All rights reserved

xix

#### **ABBREVIATIONS**

Ab antibody

APS ammonium persulphate

BSA bovine serum albumin

°C degree Celcius

EDTA ethylene diamine tetraacetic acid

ELISA enzyme-linked immunosorbent assay

FCS fetal calf serum

gm gram

HAT hypoxanthine aminopterine and

thymidine

phosphoribosyltransferase

HGPRT hypoxanthine guanine

gG immunoglobulin G

IgG1 immunoglobulin G1

IgG2a immunoglobulin G2a

IgG2b immunoglobulin G2b

IgG3 immunoglobulin G3

IgA immunoglobulin A

IgM immunoglobulin M Igs immunoglobulins milligram mg milliliter mL M molar millimolar mMmonoclonal antibody mAb milli ampare mΑ OD. optical density **PBS** phosphate buffered saline revolution per minute rpm TBE tris-borate-EDTA microgram μg microliter volt alpha delta gamma epsilon

zeta

ζ