TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF ILLUSTRATIONS	xii
ABBREVIATIONS	xiv
CHAPTER I: INTRODUCTION	
I. INTRODUCTION	1
II. LITERATURE REVIEW	8
1. p53 tumor suppressor : the guardian of the genome	8
2. The p53 mutation and p53 accumulation are biomarker for cancer	9
3. The presence of autoantibodies against p53 in serum	911
4. p53 antibodies as a cancer diagnostic tool	11
5. p53 Antibodies and population at high risk of cancer	ver ¹⁴
6. p53 antibodies and follow-up of patients during therapy	16
7. The reappearance of p53-Abs and a relapse of tumor	18
8. p53 antibodies and short survival	20

	Page
9. p53 autoantibodies comparison with established tumor markers	21
10. The current methods of p53 antibodies detection	22
11. Production of hexahistidine tagged recombinant protein	24
12. Production of biotinylated recombinant protein	25
III. OBJECTIVES	27
CHAPTER II: MATERIALS AND METHODS	28
1. Construction of expression vector	28
1.1 Preparation of p53 encoding DNA for insertion into	29
pAK400 vector and pET-15b vector	
1.2 Cloning of p53 encoding DNA into pAK400 vector	32
1.3 Cloning of p53 encoding DNA into pET-15b vector	37
2. Production of recombinant p53 protein	39
2.1 Optimization of culture conditions for the production	39
of biotinylated p53-BCCP fusion proteins from pAK400 DNA construct.	
2.2 Optimization of culture conditions for the production of	40
(His)₀-p53 fusion protein from pET-15b DNA construct.	
2.3 Determination of the level of expressed protein	40
3. Purification of (His) ₆ -p53 protein under denaturing conditions	43
3.1 Purification of (His),-p53 protein by His•Bind Resin chromatography	e 43
3.2 Dialysis of protein	45

	Page
4. Optimization of ELISA	45
4.1 Optimization of ELISA conditions using biotinylated p53	45
BCCP fusion protein as an antigen	
4.2 Optimization of capture ELISA for (His)6-p53	48
CHAPTER III: RESULTS	51
1. Construction of expression vectors (pET-15b-p53 and pAK400-p53)	51
2. Production of p53 recombinant protein	57
2.1 Optimization of culture conditions for the production of	57
biotinylated p53 –BCCP fusion protein from pAK400 DNA construct	
2.2 Optimization of culture conditions for the production of	59
(His)₀-p53 fusion protein from pET-15b DNA construct.	
3. Purification of (His) ₆ -p53 protein under denaturing conditions	62
4. Optimization of ELISA	68
4.1 Optimization of ELISA conditions using biotinylated p53-BCCP as an antigen	68
4.2 Optimization of ELISA using (His)6-p53 as antigens	71
5. Evaluation of the established ELISA	75
5.1 Reproducibility study of the established ELISA	75
5.2 Detection of p53 autoantibody in lung cancer patient serum	76
using the generated His6-tagged p53 protein.	
CHAPTER IV: DISCUSSION AND CONCLUSION	77
I. DISCUSSION	77
II. CONCLUSION	83

LIST OF ILLUSTRATIONS

Figure	Page
1. A schematic presentation the main features of the pET-15b	24
expression vector.	
2. A schematic presentation the main features of the pAK400	26
expression vector.	
3. The p53 target gene in pcDNA3.1 was amplified by NdeIp53	30
primer and p53EcoRI primer to generate NdeI-p53-EcoRI	
PCR product	
4. The p53 target gene in pcDNA3.1 was amplified by NdeIp53	30
primer and p53BamHI primer to generate NdeI-p53-BamHI	
PCR product	
5. Model of a 96-well plate which was also performed to optimized	47
Concentration of avidin and different concentrations of cell	
lysate using p53 monoclonal antibody	
6. Model of a 96-well plate which was also performed to optimized	3 9 48 741
concentration of avidin and different concentrations of cell	
lysate using human serum.	
7. Agarose gel analysis showing the obtained p53 PCR products	e / 54 e
8. Agarose gel analysis showing successful digestion of previously	54
inserted p53 DNA.	

Figure	Page
9. Agarose gel analysis of digested pET-15b empty vector	55
10. An example of agarose gel analysis of PCR products to verify	55
the appropriate ligation	
11. Agarose gel analysis of antibiotic resistant colonies	56
screening by PCR	
12. Agarose gel analysis of restriction enzyme digested products to	56
confirm the obtained positive colonies.	
13. Western blot analysis of biotinylated p53-BCCP expressed in E. coli	58
Origami B cells.	
14. Western blot analysis of (His) ₆ -p53 fusion expressed in <i>E. coli</i> BL21(DE3)	60
15. Western blot analysis of (His) ₆ -p53 fusion protein expressed	61
in E. coli BL21(DE3)pLysS	
16. Coomassie blue staining of polyacrylamide gel showing preliminary	64
purification process of (His) ₆ -p53.	
17. Coomassie blue staining of polyacrylamide gel showing effect of	65
gradient concentration of imidazole on the purification process.	
18. Coomassie blue staining of polyacrylamide gel showing purification	66
process of (His) ₆ -p53 using optimal condition.	
19. The purified (His) ₆ -protein was further characterized by probing with	V67 (SIT)
mouse anti-human p53 monoclonal antibody (clone DO7)	
20. Representative results of mouse anti- p53 Abs of lung cancer patients	67
detected by immunoblotting.	

Figure	Page
21. Representative results of optimization of the concentration of	69
avidin and containing biotinylated p53-BCCP cell lysate.	
22. Representative results of optimization of the concentration of biotinylate	70
p53-BCCP fusion protein antigens to be coated onto an ELISA plate.	
23. Representative results of optimization of the concentration of (His) ₆ -p53	72
antigens to be coated onto an ELISA plate	
24. Representative results of finding the most suitable buffer for coating	74
(His) ₆ -p53 onto microtiter plate.	
25. Representative results of the quality control chart of OD of the control	75
serum by established ELISA.	
26. Representative results of detection of antibody responses of p53	76
by established ELISA comparison with Western blot results.	
AI UNIVERSITA	

ABBREVIATIONS

(His)₆-p53 hexahistidine tagged p53

μg microgram

μl microlitre

BCCP biotin carboxyl carrier peptide

CV coefficient of variation

g gram

His

HCl hydrochloride

kDa kilo Dalton

litré

1

M molar

ml mililitre

mM milimolar

NaOH sodium hydroxide

nm nanometre

°C degree Celsius

OD optical density

P53-BCCP BCCP tagged p53 protein

SDS sodium dodesyl sulfate

TEMED N, N, N', N'-tetramethylethyllene diamine alpha

β beta