Thesis Title Anatomical and Biochemical Changes in Sulphur

Dioxide Treated Longan Fruit During Storage at

Low Temperature

Author Miss Wilasinee Chitbanchong

Degree Doctor of Philosophy (Postharvest Technology)

Thesis Advisory Committee Asst. Prof. Dr.Vicha Sardsud Chairperson
Asst. Prof. Dr.Kanda Wangchai Member

Dr.Rumphan Koslanund Member

ABSTRACT

The experiment was aimed to evaluate the effects of sulfur dioxide (SO₂) treatments, and storage temperatures on the anatomical, physical, and chemical properties of longan fruits cv. "Biew Kiew" and "DAW" changing during storage. The physical and chemical properties of longan fruits were recorded initially and during storage period. The postharvest quality was depended on cultivars and the postharvest management. In longan fruits cv. "Biew Kiew", the treatment of fresh longan fruits with SO₂ treatment combined with the suitable storage condition improved the overall longan fruit quality, especially on inner and outer peel tissue and aril color than no SO₂ treatment. Treatment stabilized peel color with no subsequent loss of color during storage (fruit color were bright – yellowish color), while no SO₂ treatment showed more scarlet than orange-red (hue angle; H*, decreased), became darkened (L* decreased), and less intensely red (chroma; C*, decreased). Under high storage temperature (7 degree Celsius), the outer peel color was more browning. Additionally, color was extremely changed as affected by storage durations factor, the peel color in both inner and outer became dark brown color when the storage duration increased. After SO₂ treatment, pH value of peel tissue

significantly decreased. However, pH value of aril tissue was significantly increased (4.32 and 6.88, respectively). These changes stated similarly with the effects of storage temperatures. Moreover, the pH value of peel and aril tissue increased gradually over the storage durations. The activity of polyphenol peroxidase (PPO) enzyme in control fruits (no SO₂ treatment) was gradually lower than SO₂ treatment. Fruits exposed to cool storage temperature (2 degree Celsius) exhibited a low PPO enzymatic activity compared to those kept in high storage temperature (7±2 degree Celsius). Moreover, PPO enzymatic activity significantly increased over the storage durations. SO₂ treatment had no effect on the weight loss of longan fruit during storage. The main factors affected the percentage of weight loss were storage temperatures and storage durations. The percentage of weight loss gradually increased when the storage temperatures and storage duration increased. The fruit stored in low temperature (2±2 degree Celsius) combined with SO₂ treatment was less water loss than no treatment.

For longan fruits cv. "DAW", the SO₂ treatment did not affect on aril color changed, while the storage duration was the main factor that affected on the change of aril color. The aril became dull yellow color after stored for 8 weeks. For the inner part of peel color, the longan fruits with no SO₂ treatment and stored under 7±2 degree C was more darkened than that SO₂ treated and stored under 2±2 degree C. The pH value of peel tissue decreased significantly after treated longan fruits with SO₂ (4.30), when compared with non SO₂ treatment (5.36). However, SO₂ treatment did not affected on pH value of aril. The storage temperature did not effect on pH value of peel and aril changed. On the other hand, pH value of peel and aril tissues increased significantly in the long term of storage. The storage duration did not affect only pH value of peel and aril changed but also affected on weight loss of longan fruit. The weight loss increased significantly during long term of storage but it was not affected by SO₂ treatment and storage temperatures. All treatments did not affect on PPO activity.

The post-harvest quality was depended on cultivars and the post-harvest management. The SO₂ treatment in combination with cold storage temperature could maintain the good peel and aril color that correlated to inhibited polyphenol oxidase

(PPO) enzymatic activity. Unfortunately, the excessive of SO_2 treatment reduced fruit quality, especially under high storage temperature (7 \pm 2 degree C). It lost membrane integrity, and increased the membrane electrolyte leakage. The membrane damage allowed PPO to be activated that revealed the coloration of browning. In addition, these conditions significantly reduced the content of polyphenolic compunds.

There was a large variation in the content of the gallic acid and ellagic acid compounds, which depended on the varieties and treatments. The ellagic acid content was found in the peel and aril tissue, while gallic acid was not detected in both tissues. This may be related to a severe cellular disruption in these fruit, which was produced by a release of the PPO linked to cell wall and led to decrease of ellagic acid and gallic acid content. Ellagic acid content in aril tissue was significantly decreased after SO₂ treatment, while the content was not different in peel tissues. The ellagic content in both peel and aril tissues had a reverse correlation along the storage duration. Ellagic acid content was highest in fresh tissues, while the content was decreased significantly during long – term of storage. The cool storage condition (2 \pm 2 degree C) could maintain the high content of ellagic acid in both peel and aril tissue, while the content of ellagic acid decreased significantly under high storage temperature, especially in aril tissue. Ellagic acid was not detected when stored under high storage temperature. During storage, the content of ellagic acid in peel tissue decreased significantly, and was not detected after stored for 6 weeks. In aril tissue, the ellagic acid content completely declined after stored for 2 weeks under cool storage temperature (2 ± 2 degree C).

The sulphite residues could detected immediately after SO₂ treatment in all part of longan fruit, especially on peel tissue, but the residues was significantly decreased along the storage durations. However, in longan fruits cv. "Biew Kiew", sulphite contamination still high in peel tissue (900.20 mg kg⁻¹) while found in aril only 0.17 mg kg⁻¹. In longan fruits cv. "DAW", sulphite contamination still high concentration in peel tissue (350 mg kg⁻¹) after stored for 8 weeks, while sulphite contamination was not found in aril after stored for 4 weeks. The data obtained from this study suggested that the optimum of SO₂

concentration and cold storage temperature could prolonged the post-harvest quality and extend shelf life of longan fruits.

The microscopic anatomy were assessed using a stereomicroscope, light microscope (LM), scanning electron microscope (SEM) and transmission electron microscope (TEM). It was found that there were many natural crackings on the outer surface of longan pericarp. The surface cracking also impaired the physiological function of the cuticle and increased water permeability, which may cause water soaking at the inner side of the peel. The injured cell would accelerate the oxidation of phenolic substances and the oxidative products resulted in dark color of inner and outer peel. The membrane damage allowed PPO to be activated that revealed the coloration or browning. In addition, these conditions significantly reduced the content of polyphenolic compunds.

46 MAI

ชื่อเรื่องวิทยานิพนธ์ การเปลี่ยนแปลงทางกายวิภาคและชีวเคมีของผลลำไยที่รมด้วย ก๊าซซัลเฟอร์ไดออกไซด์ระหว่างเก็บรักษาที่อุณหภูมิต่ำ

ผู้เขียน

นางสาววิลาสินี จิตต์บรรจง

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (วิทยาการหลังการเก็บเกี่ยว)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์ ผศ.คร.วิชชา สอาคสุด ประธานกรรมการ

ผศ

.คร.กานคา หวังชัย กรรมการ

ดร

รัมม์พัน โกศลานันท์ กรรมการ

บทคัดย่อ

ผลของการเปลี่ยนแปลงทางกายวิภาค ทางกายภา พและทาง ชีวเคมีของลำไยที่รมซัลเฟอร์ได ออกไซด์ระหว่างการเก็บรักษา พบว่าคุณภาพของลำไยขึ้นอยู่กับพันธุ์ โดยการรมซัลเฟอร์ไดออกไซด์มี ผลต่อการเปลี่ยนแปลงสี ลำไยที่ไม่ได้รมซัลเฟอร์ไดออกไซด์ สีเปลือกจะเปลี่ยนเป็นสีน้ำตาลและ ภายใต้การเก็บรักษาที่อุณหภูมิ $7\pm2^{\circ}$ C สีเปลือกยิ่งมีสีน้ำตาลมากขึ้น สำหรับสีเนื้อลำไยที่รมซัลเฟอร์ได ออกไซด์จะมีสีเหลืองสว่างและเปลี่ยนเป็นสีเหลืองขุ่นเมื่อระยะเวลาการเก็บรักษานานขึ้น การรม ซัลเฟอร์ไดออกไซด์มีผลต่อการเปลี่ยนแปลง pH ที่เปลือกและเนื้อเป็น 4.32 และ 6.88 ตามลำดับ ลำไย ที่เก็บรักษาที่อุณหภูมิ $2\pm2^{\circ}$ C จะมีกิจกรรมของเอนไซม์ PPO น้อยกว่าลำไยที่เก็บรักษาที่อุณหภูมิ $7\pm2^{\circ}$ C ยิ่งไปกว่านั้นกิจกรรมของเอนไซม์ PPO จะเพิ่มขึ้นเมื่อระยะเวลาการเก็บรักษานานขึ้นโดยที่จะมีผล ต่อการเปลี่ยนแปลงน้ำหนักด้วย

การรมซัลเฟอร์ ใดออก ใชด์ ไม่มีผลต่อการเปลี่ยนแปลงสีเนื้อในพันธุ์ดอ ในขณะที่ระยะเวลา การเก็บรักษาเป็นปัจจัยสำคัญในการเปลี่ยนแปลงสีเนื้อโดยสีเนื้อจะเปลี่ยนเป็นสีเหลืองขุ่นเมื่อเก็บรักษา เป็นระยะเวลา 8 สัปดาห์ สำหรับสีเปลือกในของลำไยที่ไม่ได้รมซัลเฟอร์ ไดออกไซด์และเก็บรักษาที่ 7 ± 2°C จะมีสีน้ำตาลมากกว่าที่เก็บรักษาที่อุณหภูมิ 2 ± 2°C และการเปลี่ยนแปลง pH ของเปลือกลำไยที่ รมและ ไม่รมซัลเฟอร์ ไดออกไซด์มีค่า 4.3 และ 5.36 ตามลำดับ อย่างไรก็ตามไม่มีผลต่อการ เปลี่ยนแปลง pH ของเนื้อ ในขณะเดียวกันค่า pH ของเปลือกและเนื้อจะเพิ่มขึ้นเมื่อการเก็บรักษานาน ขึ้น ระยะเวลาการเก็บรักษามีผลต่อการเปลี่ยนแปลงน้ำหนัก

คุณภาพหลังการเก็บเกี่ยวขึ้นอยู่กับพันธุ์และการจัดการหลังการเก็บเกี่ยว การรมซัลเฟอร์ได ออกไซด์ร่วมกับการเก็บรักษาที่อุณหภูมิต่ำสามารถยับยั้งการเปลี่ยนเป็นสีน้ำตาลของเปลือกโดยการ ยับยั้งเอนไซม์ PPO แต่การใช้ซัลเฟอร์ไดออกไซด์เกินมาตรฐานกำหนดก็ทำให้คุณภาพลำไยลดลง โดยเฉพาะการเก็บรักษาที่อุณหภูมิสูง (7 ± 2°C) จะทำให้เกิดการรั่วไหลของเซลล์เพิ่มมากขึ้น กิจกรรม ของเอนไซม์ PPO ที่เพิ่มขึ้นทำให้เปลือกเป็นสีน้ำตาล เมื่อวิเคราะห์หาสารประกอบฟินอลในเปลือกไม่ พบกรดกาลิกแต่พบกรดเอลลาจิก โดยกรดเอลลาจิกจะลดลงในลำไยที่รมซัลเฟอร์ไดออกไซด์และเก็บ รักษานานขึ้น การเก็บรักษาที่อุณหภูมิต่ำ 2 ± 2°C สามารถรักษาปริมาณกรดเอลลาจิกในเปลือกและ เนื้อมากกว่าการเก็บรักษาที่อุณหภูมิ 0°C ในระหว่างการเก็บรักษาปริมาณกรดเอลลาจิกในเปลือกลดลง อย่างต่อเนื่องและไม่สามารถตรวจพบหลังเก็บรักษานาน 6 สัปดาห์ ในเนื้อสลายไปหลังการเก็บรักษา นาน 2 สัปดาห์

ปริมาณซัลเฟอร์ไดออกไซด์ตกค้างในเปลือกและเนื้อลำไยลดลงระหว่างการเก็บรักษา อย่างไร ก็ตามปริมาณซัลเฟอร์ไดออกไซด์มีปริมาณสูงในเปลือกและเนื้อของพันธุ์เบี้ยวเขียวเท่ากับ 900.20 และ 0.17 mg kg⁻¹ ตามลำดับ สำหรับพันธุ์ดอปริมาณซัลเฟอร์ไดออกไซด์ในเปลือกเท่ากับ 350 mg kg⁻¹ และ ไม่พบปริมาณซัลเฟอร์ไดออกไซด์ในเนื้อ

ผลการศึกษาจุลกายวิภาคของเปลือกลำไยด้วยกล้องจุลทรรศน์สเตอริโอ (stereomicroscope) กล้อง light microscope (LM) กล้องจุลทรรศน์อิเล็กตรอนชนิคส่องกราค (scanning electron microscope; SEM) และกล้องจุลทรรศน์อิเล็กตรอนชนิคลำแสงส่องผ่าน (transmission electron microscope; TEM) พบว่าผิวด้านนอกของเปลือกลำไยมีรูเปิดธรรมชาติและเสื่อมสลายในทางสรีระ วิทยาโดยการเพิ่มขึ้นของการสูญเสียน้ำภายในเปลือกซึ่งความเสียหายของเซลล์เกิดจากปฏิกิริยาออกซิ เคชั่นของสารประกอบฟินอลโดยกิจกรรมของเอนไซม์ PPO และการลดลงของปริมาณสารประกอบฟิโนลิค ทำให้เกิดเป็นสีน้ำตาลทั้งในเปลือกและเนื้อ

rights reserved