Thesis Title Development of Group A Streptococcal M Typing

and Bactericidal Activity of J14, J14.1, J14-R1 and

J14-R2 Antisera Against Group A Streptococci

isolated from the Northern Thai Population

Author Ms. Nonglak Yoonim

Degree Doctor of Philosophy (Microbiology)

Thesis Advisory Committee Assist. Prof. Dr. Sumalee Pruksakorn Chairperson

Prof. Emeritus Dr. Sanit Makonkawkeyoon Member

Prof. Dr. Chulabhorn Pruksachatkunakorn Member

Assoc. Prof. Dr. Pichart Uparanukraw Member

ABSTRACT

Group A streptococcal (GAS) infections can lead to the development of severe post-infection sequelae, such as rheumatic fever and rheumatic heart disease. The majority of GAS isolates are M protein-nontypeable by standard serotyping. However, GAS typing is a necessary tool in the epidemiologic study and provides useful information for vaccine development. Most GAS vaccine strategies have focused on the surface M protein. A chimeric peptide of 14 amino acids long, J14, at the conserved C-region of M protein offers a possibility for the development of a vaccine that elicits protective opsonic antibodies against different GAS strains.

In this study, the PCR-RFLP and PCR-ELISA methods were developed and used for M typing of the GAS strains isolated from the Northern Thai population in comparison with the gold standard DNA sequencing method. By PCR-RFLP method, 38 M types were identified in 116 out of 127 GAS strains tested, while the remaining 11 strains exhibited the PCR-RFLP patterns that were not corresponded to 38 reference M types available in our laboratory. However, by DNA sequence analysis of *emm* gene, these isolates were identified as the ST6735, STBSA29, TR2612, U92492.1, and

U74320.1 M types, respectively. Among these 43 M types, the M93 was the most predominant M type identified in this study.

By PCR-ELISA method, when the PCR products coated on the plate and the tested biotinylated PCR products were homologous, the M types of GAS could be correctly identified in 22 out of 26 (84.6%) M types compared to DNA sequencing method, while the remaining 4 (15.4%) M types were considered as false negative. In contrast, PCR products of 39 heterologous M types GAS were cross-hybridized with M11 biotinylated PCR products. The PCR-ELISA method correctly identified 36 of 39 (92.3%) M types, whereas the remaining 3 (7.7%) M types were considered as false positive. The results indicated that the sensitivity and specificity of PCR-ELISA method need to be further improved and evaluated in the larger populations of GAS before being used as a routine M typing method.

Analysis of the J14 and J14-like amino acid sequences in the C-repeat regions of these 43 M types revealed 16 different patterns of J14 and J14-like sequences. It was interesting to point out that the J14 sequence was found only in a C3-repeat, whereas the J14.1 was found in both the C2- and C3-repeats. In contrast, most of other J14-like sequences were found in the C1-repeat region.

A bactericidal assay of antisera against the J14 and J14-like peptides revealed that each of the antibodies specific for J14, J14.1, J14-R1, and J14-R2 peptides was found to enhance a phagocytic activity of human white blood cells. Furthermore, the GAS isolates that possessed double or triple C-repeats were killed more readily than those contained a single C-repeat. Nevertheless, there was no correlation between the bactericidal activity and the J14 or J14-like amino acid sequence patterns in the C-repeat regions.

In conclusion, this study revealed a potential use of PCR-RFLP as a rapid screening method for M typing of GAS. In addition, antisera against the J14, J14.1, J14-R1 and J14-R2 peptides were shown to enhance the phagocytic activity of human white blood cells. The results implied that each of these peptides is potentially a candidate for the GAS vaccine development.

ชื่อเรื่องวิทยานิพนธ์

การพัฒนาการทำ M Typing ของเชื้อสเตรปโตกอกกัสกลุ่มเอ และ ฤทธิ์ฆ่าเชื้อแบกทีเรียของแอนติซีรัมชนิด J14, J14.1, J14-R1 และ J14-R2 ต่อเชื้อสเตรปโตกอกกัสกลุ่มเอที่กัดแยกได้จากประชากรไทย ในภาคเหนือ

ผู้เขียน

นางสาวนงลักษณ์ อยู่นิ่ม

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (จุลชีววิทยา)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผศ. ดร. สุมาลี พฤกษากร
ประชานกรรมการ
ศ.เกียรติกุณ ดร. สนิท มกรแก้วเกยูร
กรรมการ
ศ. พญ. จุฬาภรณ์ พฤกษชาติกุณากร
กรรมการ
รศ. ดร. พิชาติ อุปรานุเคราะห์
กรรมการ

บทคัดย่อ

การติดเชื้อสเตรปโตคอกคัสกลุ่มเอ สามารถทำให้เกิดอาการหลังการติดเชื้อที่มีความรุนแรงเช่น ใช้รูมาติกและโรคหัวใจรูมาติก เชื้อสเตรปโตคอกคัสกลุ่มเอ ที่พบส่วนใหญ่จะเป็นชนิดที่ไม่สามารถจัดจำแนก ชนิดโดยอาศัยโปรตีนเอ็ม (M protein-nontypable) ด้วยวิธี Serotyping มาตรฐานได้ อย่างไรก็ตามการจัด จำแนกชนิดของเชื้อสเตรปโตคอกคัสกลุ่มเอ เป็นสิ่งสำคัญในการศึกษาทางระบาดวิทยา และนำมาซึ่งข้อมูลที่ มีประโยชน์เพื่อการพัฒนาวัคซีน โดยแนวทางในการพัฒนาวัคซีนสำหรับเชื้อสเตรปโตคอกคัสกลุ่มเอ ส่วนใหญ่มุ่งศึกษาในส่วนของโปรตีนเอ็มที่อยู่บนผิวเซลล์ โดย J14 ซึ่งเป็นเปปไทด์แบบ chimeric ที่ประกอบด้วยกรดอะมิโน 14 ตัว ซึ่งอยู่ในส่วน conserved C-region ของโปรตีนเอ็ม ที่พบว่ามีความเป็นไปได้ ที่จะนำไปพัฒนาเป็นวัคซีนเพื่อกระตุ้นการสร้างแอนติบอดีที่ช่วยในการฆ่าเชื้อสเตรปโตคอกคัสกลุ่มเอได้ หลายสายพันธุ์

ในการศึกษาครั้งนี้ ได้พัฒนาวิธี PCR-RFLP และ PCR-ELISA ขึ้น เพื่อใช้ในการจัดจำแนกชนิดของ เชื้อสเตรปโตคอกคัสกลุ่มเอที่คัดแยกได้จากประชากรไทยในภาคเหนือโดยอาศัยโปรตีนเอ็มโดยเปรียบเทียบ กับวิธี DNA sequencing ซึ่งเป็นวิธีมาตรฐาน พบว่าการตรวจด้วยวิธี PCR-RFLP สามารถจำแนก M type ของเชื้อสเตรปโตคอกคัสกลุ่มเอที่ทำการศึกษาได้ 38 M type ในตัวอย่างตรวจจำนวน 116 สายพันธุ์ จาก 127 สายพันธุ์ ในขณะที่อีก 11 สายพันธุ์ที่เหลือ แสดงรูปแบบของ PCR-RFLP ที่ไม่สอดคล้องกับ M type อ้างอิง 38 M types ที่มีอยู่ในห้องปฏิบัติการของเรา อย่างไรก็ตาม เมื่อนำเชื้อเหล่านี้มาหาลำดับของนิวคลีโอไทด์ของ

ยืน emm สามารถระบุ M type ได้ตามลำดับ ดังนี้ ST6735, STBSA29, TR2612, U92492.1, และ U74320.1 ในการศึกษาครั้งนี้พบว่าในเชื้อจำนวน 43 M types นั้น M93 เป็น M type ที่พบได้บ่อยที่สุด

การตรวจโดยวิธี PCR-ELISA เมื่อ PCR product ที่เกลือบอยู่บน plate มีลำดับนิวกลีโอไทด์ที่ เหมือนกันกับ PCR product ที่ทำการทดสอบที่มี biotin ติดอยู่ ก็จะให้ผลที่ทำให้สามารถระบุ M type ของ เชื้อสเตรปโตกอกกัสกลุ่มเอ จำนวน 22 M types จากทั้งหมด 26 M types กิดเป็น 84.6 % ได้ถูกต้องเมื่อ เปรียบเทียบกับการตรวจโดยวิธี DNA sequencing ในขณะที่อีก 4 M types ที่เหลือ กิดเป็น 15.4 % ถูกพิจารณา ให้เป็นผลลบเท็จ ในทางตรงกันข้าม PCR product ของเชื้อสเตรปโตกอกกัสกลุ่มเอที่มี M type ต่างกันจำนวน 39 M types ได้นำมาทำ cross-hybridized กับ PCR product ของเชื้อสเตรปโตกอกกัสกลุ่มเอ M11 ที่มี biotin ติดอยู่ พบว่าวิธี PCR-ELISA สามารถระบุผลที่ถูกต้อง จำนวน 36 M types จากทั้งหมด 39 M types กิดเป็น 92.3 % ขณะที่อีก 3 M types ที่เหลือ กิดเป็น 7.7 % ถูกพิจารณาให้เป็นผลบวกเท็จ ผลการทดลองชี้ให้เห็นว่า กวามไวและความจำเพาะของวิธี PCR-ELISA ยังมีความจำเป็นที่จะต้องได้รับการพัฒนาให้ดียิ่งขึ้นและมีการ ประเมินโดยการตรวจสอบยืนยันกับเชื้อสเตรปโตกอกกัสกลุ่มเอจำนวนมากขึ้น ก่อนที่จะนำมาใช้ในงาน ประจำในการทำ M typing

ผลจากการวิเคราะห์ลำดับกรดอะมิโนของ J14 และลำดับที่คล้ายคลึงกับ J14 ในส่วน C-repeat ของ เชื้อสเตรปโตกอกคัสกลุ่มเอทั้ง 43 M types สามารถที่จะแยกรูปแบบที่แตกต่างกันของลำดับกรดอะมิโนของ J14 และลำดับที่คล้ายคลึงกับ J14 ได้เป็น 16 แบบ สิ่งที่น่าสนใจที่ควรกล่าวถึงก็คือการพบว่าลำดับกรดอะมิโน แบบ J14 จะพบเฉพาะใน C3-repeat เท่านั้น ในขณะที่ J14.1 จะพบทั้งใน C2- และ C3-repeats ส่วนลำดับ กรดอะมิโนรูปแบบที่คล้ายคลึงกับ J14 ตัวอื่นๆ จะพบอยู่ในส่วนของ C1-repeat

การทดสอบฤทธิ์ฆ่าเชื้อแบคทีเรียของแอนติซีรัมต่อเปปไทด์ J14 และเปปไทด์ที่คล้ายกับ J14 พบว่า แอนติบอดีแต่ละชนิดที่จำเพาะกับเปปไทด์ J14, J14.1, J14-R1 และ J14-R2 ช่วยเพิ่มความสามารถของ เม็ดเลือดขาวของคนในการจับกินเชื้อได้ดี นอกจากนี้ยังพบว่าเชื้อสเตรปโตคอกคัสกลุ่มเอสายพันธุ์ที่มี C-repeat จำนวน 2 หรือ 3 ตำแหน่ง จะถูกฆ่าได้ง่ายมากกว่าเชื้อสเตรปโตคอกคัสกลุ่มเอสายพันธุ์ที่มี C-repeat เพียงตำแหน่งเดียว อย่างไรก็ตาม ไม่มีความสัมพันธ์ระหว่างความสามารถในการฆ่าเชื้อกับรูปแบบของลำดับ กรดอะมิโนของ J14 และที่คล้ายคลึงกับ J14 ในส่วน C-repeat

โดยสรุป การศึกษานี้แสดงให้เห็นว่า วิธี PCR-RFLP มีประสิทธิภาพในการนำไปใช้ตรวจคัดกรอง ชนิดของ M type ได้อย่างรวดเร็วสำหรับเชื้อสเตรปโตคอกคัสกลุ่มเอ นอกจากนี้ยังพบว่าแอนติซีรัมต่อ เปปไทด์ J14, J14.1, J14-R1 และ J14-R2 ช่วยเพิ่มความสามารถของเม็ดเลือดขาวของคนในการจับกินเชื้อได้ดี จากผลการทดลองนี้บ่งชี้ว่าเปปไทด์เหล่านี้ เป็นเปปไทด์ที่มีศักยภาพที่จะนำไปพัฒนาเป็นวัคซีนต่อเชื้อสเตรปโตคอกคัสกลุ่มเอได้