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ABSTRACT

Microseismic monitoring system plays an important role in the monitoring, early
warning, and prevention of mining-induced ground pressure disasters. These systems
integrate functions such as collecting, locating, analyzing, and interpreting seismic
activities induced by microcracks within rock masses. However, with the generation of a
large amount of monitoring data, the rapid, accurate, and real-time identification of
different types of microseismic events has become a fundamental requirement for disaster

prevention and control, as well as for the construction of smart mines.

This paper proposed different automatic identification and classification models for
microseismic events using machine learning technology, based on data mining and
analysis. The aim is to improve the efficiency and accuracy of microseismic data analysis,
thereby providing a solid foundation for geostress disaster management and the

advancement of smart mining systems.

Firstly, microseismic data collected by monitoring systems from three different
mines in Shaanxi Province, China, were processed into raw waveform images, with each

event consisting of six sub-graphs forming a sample graph. Based on expert experience



and manual identification, three sample databases including four types of events—mining
microseisms, blasting, drilling, and noise—were established, resulting in diverse datasets.

Subsequently, this paper employed various advanced algorithms and models to
automatically extract features from different waveform images and construct an
intelligent identification system for microseismic events. Specifically, methods
combining Histogram of Oriented Gradients (HOG) features with Shallow Machine
Learning (SML), Convolutional Neural Networks (CNN), and transfer learning-based
deep learning models such as ResNet-18, MobileNet-V2, and Inception-V3 were

selected.

Experiments were conducted using the three sample databases, and the
classification performance and recognition accuracy of different models were compared.
The results showed that on the test dataset A, the overall accuracy of the HOG-SVM, MS-
CNN, ResNet-18, MobileNet-V2, and Inception-V3 models reached 0.971, 0.974, 0.981,
0.982, and 0.987, respectively. Comparative analysis of the models revealed that deep
learning models, especially Inception-V3, outperformed others in terms of accuracy,
demonstrating the potential of deep learning in classifying microseismic events. The
HOG-SVM method demonstrated the fastest processing efficiency. The MS-CNN model
achieved an effective balance between recognition efficiency and classification accuracy.

This study introduces an innovative, efficient, and precise approach for intelligently
identifying microseismic events. It offers a comparative analysis of machine learning
methods, aiding users in choosing the right algorithms for their tasks. The research
expands beyond microseismic and blasting event identification to include drilling and
noise events, enhancing the intuitive and precise recognition of waveforms. The models'
adaptability across various mining data showcases their potential to boost mine safety and

operational intelligence in real-world scenarios.

The application of machine learning methods and computer vision technology helps
achieve intelligent recognition and classification of microseismic events in the
microseismic monitoring system of mines. This enables the rapid and accurate generation
of classification results, effectively reducing the workload and misjudgment rate of

manual identification of microseismic events. At the same time, it provides interpretable



evidence for the mine disaster warning system and timely alerts for potential seismic

activities.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

With the profound integration of information technologies like the Internet of
Things (IoT) (Abdalzaher et al., 2022), big data (Arrowsmith et al., 2022), and artificial
intelligence (Al) (Anikiev et al., 2023), smart mining is gradually becoming a reality
(Barnewold et al., 2020). Notably, the microseismic monitoring technique, which relies
on acoustic emission and seismology (Dong & Li, 2023), plays an increasingly pivotal
role in monitoring mine safety (Di et al., 2023). It continues to address a growing range
of issues with improving effectiveness. Its main applications encompass monitoring and
providing early warnings for coal mining-induced rock bursts (Zhang et al., 2021), mine
seismicity (Wang et al., 2023), metal mine goaf (Dong et al., 2022), deep mining, and
slope stability studies (lannucci et al., 2020; Li et al., 2021).

The microseismic monitoring system (MMS) in smart mining integrates
microseismic signal acquisition, multi-channel clock synchronization, noise suppression,
automated picking of arrival times, source localization, and analysis and interpretation of
stress-induced micro-cracks within the rock mass (Dong et al., 2016; He et al., 2023). By
employing quantitative seismological methods, it becomes feasible to calculate source
parameters such as origin time, location (Dong et al., 2020), and magnitude, as well as
frequency-domain characteristics and source mechanisms. Based on these calculations,
the spatiotemporal evolution process of microseismic events can be described, enabling
monitoring and early warning of potential disasters (Du et al., 2021; Feng et al., 2015; Li
etal., 2023).

MMS generally consists of sensors, data acquisitors, communication units, data
control center, GPS timing devices, signal cables, optical fibers, and monitoring stations,
as shown in Figure 1.1. Compared to traditional rock mass monitoring methods, the

microseismic monitoring system has four major advantages: (1) Real-time monitoring:



continuous collection of on-site microseismic signals for 24 hours; (2) Comprehensive
three-dimensional monitoring: fully digitalized data acquisition, storage, and processing;
(3) Automated spatial localization and display: automatic collection, localization, and
display of microseismic signals; (4) Remote transmission and monitoring of information:
remote collaboration and monitoring through internet connectivity, enabling visualization

and analysis on multiple user computers.
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Figure 1.1 Composition of microseismic monitoring system

The signals collected by existing microseismic monitoring systems are diverse and
vary in nature. Previous research has mostly focused on two categories: microseismic
events and blasting events. However, in practical mining environments, signals are not
limited to these two categories but also include rock drilling, fan noise, power
interference, and other sources of noise. In this work, the research objects in mining are
divided into four main categories: (1) blasting events, (2) microseismic events, (3) rock
drilling events, and (4) other noise events. Blasting events refer to signals directly caused

by shock waves generated from explosive detonations resulting in rock fragmentation



(Dong et al., 2016). Microseismic events are seismic phenomena resulting from structural
instability caused by rock deformation (Cui et al., 2023) and internal crack propagation.
Rock drilling events involve engineering operations where holes are drilled into rocks (or
ore bodies), resulting in event signals. Noise events primarily include background noise,
ore chute discharge, shovel operation, fan vibration, power interference, and other signals

that cannot be attributed to blasting, microseismic, or rock drilling.
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The analysis of microseismic events is based on accurate and clean microseismic
monitoring signals, requiring the exclusion of interference signals from blasting, rock
drilling, and noise before analysis. Although microseismic monitoring systems have been
successfully applied in rock stability analysis, it remains challenging to extract precise
microseismic events in complex environments, especially amidst various interferences
such as noise and explosions. Due to the significant overlap in frequency distribution
between blasting signals and microseismic events (Figure 1.2), relying solely on spectral

analysis makes it challenging to accurately distinguish between these two types of events.
1.2 Problem Statements

Microseismic events are small-scale seismic activities that occur in mines due to
rock fracturing or mining operations. They are essential indicators of the structural
stability within a mine. Monitoring and accurately identifying these events can help
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predict and prevent potential hazards, such as mine collapses or rock bursts, ensuring the
safety of mine workers and equipment. There are various challenges and issues in the

current identification and classification of microseismic events, including:

1. Data quality and quantity issues: The current recognition and classification of
microseismic events face multiple challenges in terms of data quality and quantity,
including low data quality, imbalanced event quantities, high workload for data
preprocessing, low efficiency in manual identification, and difficulties in data sharing
(Dong et al., 2016).

e Low data quality: Microseismic event data is often affected by noise and
interference, resulting in lower clarity and accuracy of the signals (Othman et al., 2022).
This can pose challenges for feature extraction and model training of microseismic

events.

e Imbalanced event quantities: The distribution of microseismic events
among different categories may be imbalanced, with some categories having a larger
number of events while others have fewer (Li et al., 2021). This can impact the training
and classification performance of models, leading to lower recognition capabilities for

minority classes.

e High workload for data preprocessing: Due to the large-scale nature of
microseismic event data, significant effort is required for data preprocessing tasks such
as denoising and data alignment (Zhu et al., 2019). Complex algorithms and
computational resources are needed, resulting in considerable time and energy

consumption.

e Low efficiency in manual identification: Traditional manual identification
methods rely on domain experts for manual annotation and classification, but these
methods are inefficient and prone to human errors (Ma et al., 2021).

¢ Difficulties in data sharing: The sensitivity and commercial confidentiality
of microseismic event data make data sharing and communication challenging, affecting
collaboration among researchers and the transferability of models (Arrowsmith et al.,
2022).



2. Challenges in feature extraction: Microseismic events typically exhibit small,
complex, and variable features, which pose limitations to traditional feature extraction
methods in capturing effective features. Additionally, due to the diversity of microseismic
monitoring events (Ge, 2005), different types of events possess distinct features, making
it challenging to effectively capture and characterize the features of microseismic events
(Dong et al., 2020). Specifically, the challenges are as follows:

e Manual selection of feature parameters by experts: Traditional methods
often rely on domain experts' experience and knowledge to manually select feature
parameters (Zhang et al., 2021). This approach is time-consuming, susceptible to

subjective factors, and lacks scalability and generalizability.

e Selection of source parameter features: The source parameters of
microseismic events are crucial features (Yu et al., 2022). However, selecting appropriate
source parameters for feature extraction remains challenging. Different types of
microseismic events may correspond to different source parameters, necessitating the

exploration of methods that consider multiple parameters comprehensively.

e Selection of waveform parameter features: Waveform parameters of
microseismic events contain rich information. Extracting effective features from complex
waveform data remains a difficult task. Existing feature extraction methods may not fully
capture the details and variations in microseismic event waveforms (Kan et al., 2022),

leading to inaccuracies and missing feature representations.

e Waveform image recognition and classification: In recent years, image
processing and machine learning techniques (Yang et al., 2021) have been widely applied
in the identification and classification of microseismic signals. Transforming
microseismic waveform data into images and leveraging image recognition and
classification technologies can provide more comprehensive and accurate feature
representations. However, further research is needed to explore suitable image
representation methods and effective training and optimization of image recognition

models.

3. Challenges in classification model: Building accurate and reliable classification
models for microseismic event data is a challenging task due to its complexity. Traditional

machine learning algorithms may face issues such as high computational complexity and



poor generalization ability when dealing with high-dimensional, non-linear, and large-
scale data (Lietal., 2022). In the process of designing classification models, the following

issues and challenges exist:

e Accuracy: Ensuring that the classification model accurately categorizes
microseismic events is a key objective (Wilkins et al., 2020). The model should have high
accuracy to correctly identify various types of microseismic events, including minority

classes.

e Efficiency: In practical applications, the efficiency of the classification
model is an important consideration (Wamriew et al., 2022). The model should be able
to classify large-scale microseismic event data quickly and accurately within a reasonable

time frame.

e Resource requirements: Designing efficient classification models for
large-scale microseismic event data requires effective utilization of computational
resources. The model should consider computational complexity and storage
requirements while being able to operate effectively on existing hardware infrastructure.

o Interpretability: Interpretability of the model is also an important
requirement for the recognition and classification of microseismic events (Basnet et al.,
2024). The model should provide explanations and reasoning for classification decisions,

enabling users to understand the working principles and results of the model.

e Generalization and robustness: The classification model should possess
good generalization ability, exhibiting stable and reliable performance across different
datasets (Pham et al., 2021). Additionally, the model should demonstrate robustness
against noise, interference, and data variations to ensure its effectiveness and reliability

in real-world applications.
1.3 Research Questions

Based on a comprehensive review and analysis of relevant literature, our research

aims to address the following three questions:

1. How to utilize machine learning methods for automatic microseismic signal
identification, addressing the issue of high workload and low efficiency in manual

identification?



2. How to improve the recognition efficiency and classification accuracy of existing

microseismic signal identification and classification models?

3. How to enhance the generalization and robustness of models in the identification

and classification of microseismic event waveforms?

By focusing on these research questions, we aim to advance the automation of
microseismic signal processing, improve the accuracy of classification algorithms, and
provide insights and references for the performance of different classification models in

microseismic signal recognition.
1.4 Objectives of the Study

Based on the above research gaps, the objective of this work is to develop a machine
learning model with high accuracy and timeliness, which can automatically identify and
classify microseismic signals into different categories of events (such as microseismic
events, blasts, drilling and noises). In addition, the proposed model is compared and
evaluated with existing research methods and classical image classification models.

Specifically, the purpose of this study includes the following three aspects:

1. To develop a classification model that can automatically identify microseismic
event waveforms without the need for human intervention, aiming to address the issue of
traditional machine learning identification methods relying on expert experience and

manual feature engineering.

2. To improve and optimize existing classification models and algorithms to further
enhance the efficiency and accuracy of waveform recognition for different types of

microseismic events.

3. To meticulously refine and augment the model's architecture, with a focus on
bolstering its adaptability and fault tolerance. This endeavor will integrate advanced
machine learning techniques and rigorous testing methodologies to ensure the model

maintains exceptional performance across a wide array of microseismic data.

By achieving these research objectives, this study can provide more reliable and
effective technical support for the intelligent identification and classification of
microseismic signals, thus playing an important role in microseismic monitoring and

mine safety and other related fields.



1.5 Contributions of the Study

This study has made the following major contributions to the domain of

microseismic event identification and classification:

1. Dataset construction and preprocessing: This study is dedicated to building a
high-quality dataset for monitoring microseismic events in mines. By generating 6-
channel waveforms of microseismic events and leveraging human expertise to label them
as microseismic, blasting, rock drilling, and noise events, a reliable data foundation is
provided. This dataset ensures the repeatability and comparability of research on

microseismic events, offering support for subsequent research work and experiments.

2. Efficient intelligent recognition model: By constructing an intelligent recognition
model based on machine learning techniques, this study aims to improve the efficiency
of microseismic signal classification and reduce the workload of manual judgment. The
model utilizes advanced algorithms and technologies to rapidly and accurately classify
microseismic signals, thereby enhancing the level of automation in recognition. Through
appropriate feature representation methods, adjustment of model parameters, and
addressing issues such as overfitting and underfitting, we have successfully achieved

accurate identification and classification of microseismic events.

3. Model performance evaluation and validation: To evaluate the performance of
the proposed microseismic event recognition and classification model, this study
conducted experiments and tests, employing suitable metrics and methods for evaluation.
By comparing with existing methods, we verified the superiority of the proposed model
and demonstrated its potential applications in engineering safety, geological exploration
and resource development, and earthquake activity monitoring and early warning
(Mousavi et al., 2023).

4. Practical application promotion: The achievements of this study can be applied
in various fields, including not only mining engineering safety but also earthquake
activity monitoring and early warning, geological exploration, and oil and gas resource
development. By applying the research outcomes to practical scenarios, valuable
references and support are provided for research and applications in related fields,
promoting further development and application of intelligent microseismic event

recognition and classification technologies (Kang et al., 2023).



In summary, this study has made significant contributions by improving the
efficiency of microseismic signal recognition, enhancing the accuracy of recognition
models, and providing effective data for mine disaster monitoring. These contributions
advance the field of mine safety monitoring and offer new insights and methodologies for

related research.
1.6 Scope of the Study

The scope of this study is to achieve rapid and accurate identification and
classification of microseismic signals in mining environments. The research covers the
fields of computer vision techniques and machine learning algorithms, with data primarily
sourced from metal mines (Feng et al., 2017).

Firstly, microseismic signals will be transformed into event waveform images.
Utilizing computer vision techniques such as image processing, recognition, and
classification, different datasets of event waveform images will be established.
Subsequently, machine learning algorithms such as Shallow Machine Learning (SML),
Convolutional Neural Networks (CNN) (Chen et al., 2019), and Deep Neural Networks
(DNN) will be employed. These algorithms will be trained using sample databases from
different mining areas to obtain optimal models, thereby improving the accuracy and

timeliness of microseismic signal identification and classification.

To ensure the reliability and effectiveness of the research, a large amount of real
microseismic signal data will be utilized for testing, and comparisons will be made with
existing research methods and image classification models. The performance of the
models will be comprehensively evaluated based on accuracy, identification duration,
precision, recall, and F1 score, leading to the selection of the best-performing model. The
ultimate goal is to provide more reliable and intelligent technological support for
microseismic monitoring and mining safety research (Choi et al., 2024). This will

facilitate the intelligent transformation and safe development of mining operations.
1.7 Conceptual Framework

This study aims to achieve rapid and accurate identification and classification of
microseismic signals in mining environments by combining computer vision techniques
and machine learning algorithms. The conceptual framework of this study is illustrated
below (Figure 1.3):



1. Data collection and preprocessing: Firstly, a microseismic monitoring system
will be deployed in metal mines to collect microseismic signal data, encompassing
various locations and time periods. The collected data will undergo preprocessing
operations such as denoising, filtering, and data cleaning to enhance signal quality and
reduce interference. The preprocessed microseismic signals will be transformed into

event waveform plots suitable for processing by machine learning algorithms.

2. Establishment of event waveform databases: Corresponding datasets of event
waveform images will be constructed for different types of microseismic events. Expert
engineers will employ manual identification and classification methods to annotate and
categorize the event waveform plots. This will establish datasets of event waveform
images for different categories, providing the foundation for subsequent model training

and recognition.

3. HOG and Shallow machine learning methods (SML): First, we use the Histogram
of Oriented Gradients (HOG) algorithm to extract features from microseismic event
waveform images. These features will serve as inputs for subsequent classifiers. Drawing
on previous research, we will selecte five commonly used shallow machine learning
algorithms to build classifiers: SVM classifier, Linear classifier, Decision tree classifier,
K-Nearest Neighbors (KNN) classifier, and Fisher discriminant classifier. By selecting
appropriate feature representation methods and optimizing model parameters, automated

recognition and efficient classification of microseismic events will be achieved.

4. Convolutional neural network models: CNN models will be introduced,
leveraging their powerful representation capabilities in image processing, to perform end-
to-end learning and feature extraction on event waveform plots. Through designing
suitable network architectures, tuning hyperparameters, and employing appropriate loss

functions, the classification performance of microseismic events will be enhanced.

5. Deep learning and transfer learning models: To further improve recognition and
classification performance, deep learning methods such as MobileNet-V2, Inception-V3
and ResNet-18 will be employed. Additionally, transfer learning techniques will be
utilized to transfer pre-trained models from other domains to the microseismic event
recognition and classification task, accelerating model training and improving

performance.
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6. Performance evaluation and comparison: The proposed methods and models will
be tested using extensive real microseismic signal datasets. Performance evaluation will
be conducted using metrics such as accuracy, precision, recall, and F1 score. Furthermore,
comparisons with existing research approaches and image classification models will be

performed to validate the superiority and feasibility of the proposed methods.

Through this conceptual framework, this study aims to achieve intelligent
identification and classification of microseismic signals in mining environments. This
research will provide more reliable and efficient technical support for safety monitoring
and early warning systems in mining engineering (Sun et al., 2012). Additionally, it will
contribute to the application and development of computer vision techniques and machine

learning algorithms in the field of microseismic events.
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Figure 1.3 Conceptual framework of intelligent identification and classification of

microseismic events based on machine learning techniques

1.8 Thesis Outline

Through the introduction section, readers will gain an understanding of the research

background and the significance of microseismic event recognition and classification. We

identify the existing problems and challenges in the research field and state the research

problems, objectives, and contributions of this study. The following is a detailed outline

of the relevant content to be presented in this thesis:
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Chapter 2: Literature Review. This chapter will review the relevant research
achievements in the domain of microseismic event identification and classification. A
comprehensive analysis and comparison will be conducted, exploring the application of
computer vision techniques and machine learning algorithms in microseismic events,

highlighting the strengths and limitations of existing methods.

Chapter 3: Data and Methodology. This chapter will provide a detailed description
of the methods and data used in the research. It will cover data collection, sample
selection, and data preprocessing methods. Additionally, it will explain the machine
learning algorithms and models employed, including shallow machine learning methods,
convolutional neural networks, and deep learning methods such as MobileNet and
Inception-V3. This chapter aims to ensure accurate and clear descriptions of the data and

methods.

Chapter 4: Results. This chapter will introduce the experimental design, including
dataset selection, feature extraction methods, and model configurations. It will provide a
detailed description of the training and optimization processes of the models, as well as
parameter adjustments and model evaluation methods. Experimental results will be
presented, followed by performance evaluations and comparisons using metrics such as
accuracy, recall, and F1 score. Detailed analysis and discussions of the experimental

results will be conducted to explore the strengths and limitations of the methods.

Chapter 5: Discussion. This chapter will comprehensively analyze and discuss the
results and findings of the research, summarizing the performance of different methods
and models in microseismic event recognition and classification. Current challenges and
issues will be discussed, and future research directions and prospects will be proposed to

further improve and expand the field of study.

Chapter 6: Conclusion. This chapter will provide a summary of the main research
findings and contributions, emphasizing the innovation and practical value of the
research. Limitations of the study will be acknowledged, and possible avenues for

improvement will be suggested.

Through this thesis structure overview, this research will comprehensively
introduce the relevant work in microseismic event recognition and classification, provide

detailed explanations of data collection and preprocessing, the application of machine
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learning models, and analysis of experimental design and results. Additionally, the
discussion and future directions section will explore current challenges and propose
future research directions. Finally, the conclusion section will summarize the main

research findings and discuss their potential practical applications.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Microseismic monitoring technology has been proven to be an effective method for
predicting underground engineering disasters (Li et al., 2022). Correctly identifying
microseismic events during underground excavation is the basis for subsequent
geophysical analysis such as ground pressure warning and tunnel deformation monitoring
(Maetal., 2020). Rapid identification of microseismic source types within the monitoring
area and accurate extraction of valid events are fundamental to the application research
of microseismic monitoring technology (Zhang et al., 2021). However, due to various
noise and explosion interferences during mining operations, accurately identifying
microseismic signals from complex environments and operating conditions still poses
certain challenges (Shu & Dawod, 2023).

Traditional identification methods, such as manual waveform analysis (Zhao et al.,
2015), require operators to have strong knowledge of physics and signal processing, and
pre-determine artificial identification criteria. However, this method is prone to individual
experience differences and it is difficult to achieve satisfactory results due to the
variability of collected signals. At the same time, with the increasing amount of
monitoring data, this method is labor-intensive, time-consuming, and inefficient.
Therefore, researchers have extensively explored effective methods for accurately

identifying microseismic signals.

Based on the principles of different identification methods, we categorize existing
microseismic signal identification methods into three main classes: (1) spectral analysis
or frequency spectrum analysis (Li etal., 2012), (2) statistical analysis (Dong et al., 2019),

and (3) machine learning methods.
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Spectral analysis (Fagan et al., 2013) refers to the analysis of signals in the
frequency domain. It transforms time-domain signals into frequency-domain signals to
display the energy distribution of different frequency components. Common methods
used in spectral analysis include Fourier Transform (FT) (Ma et al., 2023) and Power
Spectral Density Estimation. Spectral analysis can be used to determine the presence and
strength of specific frequency components in a signal and is widely applied in fields such
as communication, audio processing, and image processing (Wei et al., 2020). On the
other hand, frequency spectrum analysis focuses more on describing and analyzing the
frequency characteristics of signals, including the number of frequency components,
frequency range, and frequency intervals. Frequency spectrum analysis typically involves
discretizing the signal and then using algorithms such as Discrete Fourier Transform
(DFT) or Fast Fourier Transform (FFT) (Jiang et al., 2015; Li et al., 2021) to calculate
the signal's spectrum. Analyzing the energy distribution of the signal in the frequency
domain helps us understand its characteristics at different frequencies. However, spectral
and frequency spectrum analysis requires a certain level of expertise, which presents

challenges in practical engineering applications (Yin et al., 2021).

In the early 21st century, statistical analysis methods were introduced and
experienced significant growth (Dong et al., 2016). Statistical analysis methods primarily
rely on the statistical properties of signals and use manually designed waveform features
for identification and classification (Chakraborty et al., 2022). By performing statistical
analysis on microseismic signals, statistical parameters, correlation, and other features
can be extracted and further used for event identification and classification. However,
statistical analysis methods still rely on the subjective experience of researchers in feature
extraction and model selection, which may affect the accuracy of the classification model.

Additionally, this method is time-consuming and may not produce satisfactory results.

In recent years, with advancements in hardware and software technology, machine
learning methods have been widely applied in the field of microseismic signal
identification (Anikiev et al., 2023). Machine learning-based methods can efficiently and
accurately identify microseismic events without the need for explicit identification
instructions. In particular, deep learning-based neural network models (Huang et al.,
2021), by combining the power of machine learning and computer vision (Zhao et al.,

2024), can automatically extract unique features from different waveforms and establish

16



an image classification framework for intelligent recognition of microseismic events.
This technological approach surpasses traditional statistical methods and improves the
efficiency of microseismic event identification. As a result, microseismic monitoring
systems can acquire valuable microseismic data, laying the foundation for subsequent
earthquake source localization, magnitude prediction, and timely warning of potential

induced seismic activities (He et al., 2017).

Figure 2.1 illustrates the relationship among artificial intelligence, machine learning,
supervised learning (Choi et al., 2019), unsupervised learning (Cano et al., 2021), deep
learning, and transfer learning (Umeaduma, 2024). Shallow learning, deep learning, and
transfer learning are subclasses of machine learning, which in turn is a subset of artificial
intelligence. Supervised learning and unsupervised learning are two distinct approaches
within machine learning, with supervised learning utilizing labeled data for training,
while unsupervised learning does not require pre-labeled data. Transfer learning (Bahri
etal., 2020) involves leveraging knowledge gained from one task to improve performance

on another related task.

Supervised
learning

Shallow
learning

Machine learning (ML)

Artificial intelligence (A

Figure 2.1 Relationship among artificial intelligence, machine learning, supervised

learning, unsupervised learning, deep learning, and transfer learning

This chapter will introduce the current research status of machine learning in the
domain of microseismic signal identification. First, we provide a brief overview of the
evolution of traditional identification methods and machine learning methods, and briefly

analyze the advantages and limitations of different methods. Then, based on the
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characteristics of machine learning methods, we classify and introduce them, and discuss
the latest research developments in microseismic event identification methods. Lastly, we
investigate the prospects and obstacles that machine learning encounters in microseismic

event classification.
2.2 Theoretical Concepts
2.2.1 Machine Learning

Machine learning (Bergen et al., 2019) is a subfield of artificial intelligence that
focuses on developing algorithms and models to enable computers to learn and make
predictions or decisions without explicit programming. It utilizes statistical techniques to
automatically analyze and interpret data, improving performance based on experience. In
the realm of microseismic signal detection, machine learning models can be trained on
annotated datasets to identify patterns and features that distinguish various types of events.
These algorithms can then be used to classify new, unlabeled microseismic signals into
different event categories.

Supervised learning (Zhao et al., 2017) is a commonly used branch of machine
learning for microseismic signal recognition. In supervised learning, algorithms are
provided with a training dataset that includes input features (such as waveform features
and statistical parameters) and corresponding output labels (such as event types). The
algorithm learns from these labeled data and builds a model capable of predicting the
correct labels for new, unseen inputs. Common supervised learning algorithms include
SVM (Cervantes et al., 2020), decision tree (Zhao et al., 2021), random forests, and neural
networks. These algorithms can handle complex relationships between input features and

output labels, capturing intricate patterns in the data.

In addition to supervised learning, there is also research based on unsupervised
learning methods. Unsupervised learning (Yang et al., 2023) is another important branch
of machine learning that does not require pre-labeled training datasets. Instead, it learns
and infers by discovering intrinsic structures, patterns, and associations within the data.
In the field of microseismic signal recognition, unsupervised learning can be applied to
tasks such as clustering analysis (Duan et al., 2021), anomaly detection, and

dimensionality reduction.
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Clustering analysis (Fagan et al.,, 2013) is a commonly used technique in
unsupervised learning, which groups data into clusters with similar features. In
microseismic signal recognition, clustering analysis can help identify microseismic
events with similar waveform characteristics, enabling automatic classification of event
types. Common clustering algorithms (Feng et al., 2023) include k-means clustering,
hierarchical clustering, and density-based spatial clustering of applications with noise
(DBSCAN) (Yin et al., 2023).

Anomaly detection (Li et al., 2009) aims to identify anomalies or outliers that do
not conform to normal patterns. In microseismic monitoring, anomaly detection can be
used to identify abnormal microseismic events that may represent potential geological
changes or activities, providing deeper analysis and warning of underground conditions
(Wang et al., 2021). Common anomaly detection algorithms include statistical-based
outlier detection, density-based outlier detection, and isolation forest-based outlier

detection.

Additionally, dimensionality reduction techniques (Mousavi et al., 2022) are also
utilized in unsupervised learning. Dimensionality reduction maps high-dimensional data
to a lower-dimensional space to reduce complexity and redundancy in the data. In
microseismic signal analysis, dimensionality reduction techniques can help extract the
most informative features and reduce computational complexity. Common
dimensionality reduction algorithms include Principal Component Analysis (PCA) (Zhu
et al., 2023) and Linear Discriminant Analysis (LDA) (Dong et al., 2011).

The advantage of unsupervised learning (Chen, 2018) methods is that they do not
require pre-labeled data and can automatically discover patterns and structures within the
data. However, due to the lack of supervision, unsupervised learning methods may be
more challenging to interpret and validate, requiring further research and exploration in

their application to microseismic signal recognition.

Another important concept in machine learning is feature extraction. Feature
extraction involves selecting or transforming raw data into a meaningful and informative
set of features that can serve as input for machine learning algorithms. In the context of

microseismic signal recognition, these features may include time-domain characteristics,
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frequency-domain properties, statistical indicators, or other relevant parameters used to
capture unique features of different event types.

Machine learning methods offer the advantages of automatic learning and
adaptability to new data, enabling them to handle the variability and complexity of
microseismic signals. They can also efficiently process large amounts of data, which is
particularly important as microseismic monitoring data continues to grow. However,
machine learning also has limitations. It requires sufficiently large and representative
labeled datasets for training, as the quality and diversity of the training data greatly impact
the performance of the models. Overfitting is another challenge in machine learning,
occurring when the model becomes overly focused on the training data and performs
poorly on new data. Regularization techniques and careful model selection can help

mitigate overfitting issues.

The evolution of machine learning in microseismic signal identification can be
broadly categorized into three stages: shallow learning, deep learning, and transfer

learning. Figure 2.2 shows the distinctions among these three stages.

In summary, machine learning provides a powerful framework for microseismic
signal recognition by utilizing statistical techniques and the ability to learn automatically
from data. It enables the development of models that accurately classify and interpret

microseismic signals, driving advancements in microseismic monitoring technology.
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Figure 2.2 Three stages of machine learning development

2.2.2 Shallow Learning

Shallow learning (Wang et al., 2020), also known as traditional machine learning,
is another commonly used approach in microseismic signal recognition. Unlike deep
learning (Alarfaj et al., 2022) methods that involve complex neural network structures
and large amounts of labeled data, shallow learning algorithms are simpler and have lower
computational requirements. Shallow machine learning methods rely on feature
engineering, which involves extracting manually designed features from input data and

using them to train classification models.

In microseismic signal recognition, shallow learning algorithms can be applied to
various types of features extracted from waveform data. These features can include
statistical measures such as mean, variance, skewness, and kurtosis, as well as time-
domain features like energy, zero-crossing rate, and peak amplitude. Additionally,
frequency-domain features like spectral centroid, spectral entropy, and spectral flatness
can also be used. Other commonly used features in microseismic signal recognition
include wavelet coefficients, autoregressive coefficients, and cepstral coefficients (Peng
etal., 2019).
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After extracting these features from the waveform data, they are used as inputs to
shallow learning algorithms such as SVM (Chandra et al., 2021), Random Forests, or k-
Nearest Neighbors. These algorithms learn patterns and decision boundaries based on the
extracted features and are trained using labeled data. Once trained, the models can classify

new microseismic signals into different classes or detect specific events of interest.

Shallow learning approaches have several advantages in microseismic signal
recognition. They are computationally efficient and can handle large-scale datasets,
making them suitable for real-time or near-real-time applications. Shallow learning
methods also require less labeled data compared to deep learning methods, which can be
beneficial when labeled data is limited or expensive to obtain. Additionally, shallow
learning algorithms provide interpretable results, allowing domain experts to understand

and analyze the underlying features contributing to the classification or detection.

However, there are limitations to shallow learning approaches. These methods
heavily rely on the quality and relevance of handcrafted features, which require domain
knowledge and expertise to select and design appropriately. The performance of shallow
learning algorithms highly depends on the choice and effectiveness of these features.
Moreover, shallow learning methods may face difficulties in capturing the intricate
patterns or relationships present in the data, which deep learning models are particularly
adept at handling (Huang et al., 2018).

To overcome these limitations, a hybrid approach combining shallow learning and
deep learning techniques can be employed (Mousavi et al., 2016). This involves using
deep learning models for feature extraction and representation learning, followed by
shallow learning algorithms for classification or detection based on the extracted features.
This hybrid approach takes advantage of both the representational power of deep learning

and the interpretability and efficiency of shallow learning.

In summary, shallow learning methods offer a simpler and computationally
efficient alternative to deep learning for microseismic signal recognition. By extracting
manually designed features from waveform data and training traditional machine learning
models, automatic classification and event detection can be achieved. However, careful
feature engineering and selection are crucial for the performance of shallow learning

algorithms. Combining shallow learning with deep learning methodologies can
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significantly improve the accuracy and efficiency of microseismic signal identification

systems.
2.2.3 Deep Learning

Deep learning (Yang et al., 2015) is an important branch of machine learning that
utilizes multi-layer neural networks to model and learn data representations. By stacking
multiple hidden layers, deep learning can automatically extract and learn more abstract
and complex features. In the domain of microseismic signal classification, deep learning
methods have been widely applied and achieved significant results (Zhang et al., 2022).
Deep learning models can effectively handle large-scale, high-dimensional microseismic
data and directly learn task-specific feature representations from raw data. This end-to-
end learning approach eliminates the need for manual feature design, allowing the models

to better adapt to different types of microseismic events (Yang et al., 2015).

Common deep learning models include convolutional neural networks (Li et al.,
2022), recurrent neural networks (RNN) (Di et al., 2023), and Autoencoders (Mousavi et
al., 2019). CNNs (Alzubaidi et al., 2021) perform well in processing time-domain or
frequency-domain microseismic waveform data, effectively capturing local features and
spatial correlations. RNNSs are suitable for handling time series data (Ding et al., 2022),
and capturing temporal relationships in microseismic signals. Autoencoders are
unsupervised learning models that can be used for unsupervised feature learning and data

dimensionality reduction (Huang, 2019).

The advantages of deep learning methods in microseismic signal recognition
include their ability to model complex features, automate feature extraction, and
robustness against noise and interference. They can learn more discriminative feature
representations from large amounts of data and handle nonlinear relationships and
complex spatiotemporal structures in the signals. However, deep learning also faces
challenges and limitations. Firstly, deep learning models usually require a large amount
of labeled data for training, which may be limited in the microseismic field due to data
scarcity. Secondly, deep learning models have high computational complexity, requiring
significant computational resources and time for training and inference. Additionally, the
interpretability of these models is limited, which complicates understanding and
explaining their internal decision-making processes (Schmidhuber, 2015).
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To overcome these challenges, researchers are constantly improving deep learning
models and algorithms to enhance their performance and efficiency (Z. Xie et al., 2022).
For example, transfer learning and semi-supervised learning techniques can utilize pre-
trained models or a small amount of labeled data to improve the generalization ability of
the models. Additionally, research on model interpretation and explainability is an
important direction aimed at enhancing understanding and interpretability of the decision-

making processes within deep learning models.

In summary, deep learning, as an important branch of machine learning, exhibits
powerful capabilities in microseismic signal recognition. By constructing deep structures
and employing end-to-end learning, deep learning models can effectively extract and
learn feature representations of microseismic signals, enabling accurate event
classification and recognition. However, further research and development are still
needed to overcome challenges such as data scarcity, computational complexity, and
model interpretability.

2.2.4 Transfer Learning

Transfer learning (Zhu et al., 2022) is also a machine learning method that aims to
accelerate the learning process and improve performance in a new task by applying the
knowledge and experience learned from another related task (Setiawan et al., 2020). In
the field of microseismic signal recognition, transfer learning is widely used to address
the challenges of data scarcity and labeling difficulties (Deepak et al., 2019).
Conventional algorithms within the realm of machine learning often necessitate extensive
datasets with labeled information for model training, and each new task requires training
a separate model from scratch. However, in practical microseismic monitoring
applications, it is often difficult to obtain a sufficient amount of labeled data, which limits
the performance and applicability of models. Transfer learning overcomes this data
limitation by leveraging existing large-scale, high-quality labeled datasets and
transferring the knowledge and features learned from other related tasks to the

microseismic signal recognition task (Pan et al., 2010).

Transfer learning can be applied in two ways: feature transfer and model transfer.
Feature transfer involves directly applying the learned feature representations from the
source domain to the target domain without retraining the feature extractor. This approach
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Is suitable when the source and target domains have similar feature representations.
Model transfer, on the other hand, involves using a pre-trained model from the source
domain as an initial model and fine-tuning or further training it on the target domain. This
approach is applicable when there are differences between the source and target domains

but still have some relevance (Dong et al., 2023).

The core idea of transfer learning is to enhance the learning effectiveness and
generalization ability of the target task by sharing knowledge and feature representations.
It reduces the dependency on a large amount of labeled data and leverages existing
experience to accelerate the learning process of new tasks. Additionally, transfer learning
can help address the challenge of labeling difficulties by assisting in labeling more
challenging samples based on the knowledge learned from existing labeled data.
However, transfer learning also faces challenges and limitations. Firstly, the differences
between the source and target domains may lead to a decrease in the performance of
transfer learning. Therefore, selecting appropriate source domains and designing effective
transfer strategies are crucial. Secondly, transfer learning requires a sufficient quantity
and quality of source domain data to learn good feature representations and knowledge.
Lastly, the effectiveness of transfer learning is influenced by the correlation and similarity
between the source and target domains, and different application scenarios may require

different transfer methods and strategies.

In conclusion, transfer learning is a powerful machine learning method with broad
applications in the field of microseismic signal recognition. By leveraging existing
knowledge and experience, transfer learning can overcome the challenges of data scarcity
and labeling difficulties, improving the performance and applicability of microseismic
signal recognition. However, further research and exploration are still needed to address
the challenges related to differences between source and target domains, selection of

transfer strategies, and requirements for source domain data.
2.2.5 Image Recognition and Classification

Image recognition and classification is an important research direction in the fields
of machine learning and computer vision (Chugh et al., 2020; Huang et al., 2021), and it

has been widely applied in microseismic signal recognition. Its goal is to automatically
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analyze and interpret input image data, categorizing them into different classes or
performing object detection (Khayer et al., 2023).

In microseismic signal recognition, image recognition and classification methods
can be used to process the visual representations of microseismic waveform data, such as
time-domain graphs, spectrograms, or time-frequency spectrograms (Li et al., 2022; Wei
etal., 2020). These image representations provide more intuitive, interpretable, and easily
processable features that help capture spatial and frequency information of microseismic
events. By training image recognition and classification models, automatic classification
and recognition of microseismic signals can be achieved. The explanations of different

visualization methods for microseismic waveform data are as follows:

1. Time-domain graphs: Microseismic waveforms are plotted over the time
axis, where the horizontal axis represents time and the vertical axis represents the
amplitude of the signal (Zhang et al., 2021). This visualization method intuitively displays

the amplitude and duration of microseismic events.

2. Spectrograms: By applying the Fourier transform to microseismic
waveform signals, the signals are transformed into the frequency domain, and the spectral
information is presented as a heatmap or color map. Spectrograms show the energy
distribution of microseismic signals at different frequencies, helping to capture the

frequency characteristics of microseismic events.

3. Time-frequency spectrograms: Microseismic waveform signals are
decomposed into small segments in different time periods and frequency ranges, and
plotted as two-dimensional images. Common time-frequency analysis methods include
Short-Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT), and
Wavelet Packet Transform (WPT). Time-frequency spectrograms provide local features
of microseismic events in both time and frequency domains, aiding in capturing their

time-frequency characteristics (Bi et al., 2021).

4. Wavelet packet spectrograms: Microseismic waveform signals are
decomposed into sub-signals of different scales and frequency bands using wavelet
packet transform, and plotted as two-dimensional images. Wavelet packet spectrograms
display the energy distribution of microseismic events at different scales and frequency

bands, helping to capture multi-scale features of microseismic events.
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5. Phase diagrams: Phase information of microseismic waveform signals is
displayed. Phase diagrams can help identify phase differences between microseismic

events, inferring their spatial distribution and propagation paths.

Among these visualization methods, time-domain graphs and spectrograms are the
most widely used in the analysis and recognition of microseismic waveform data.
Common image recognition and classification methods include Convolutional Neural
Networks, feature extraction, and image matching. CNNs are deep learning models
suitable for image data, capable of automatically extracting feature representations from
images and performing classification or object detection (Zhao et al., 2019). Feature
extraction is a traditional method that selects and extracts local features of images, such
as texture, shape, and edges, for classification. Image matching involves calculating the

similarity or distance between images for classification or recognition.

Image recognition and classification methods offer several advantages in
microseismic signal recognition. Firstly, image representations provide more intuitive
and interpretable features, making the models more sensitive to spatial and frequency
information of microseismic events. Secondly, image recognition and classification
methods are efficient and flexible when handling large-scale image data, capable of
dealing with complex spatiotemporal structures and nonlinear relationships (Wang et al.,
2024). Additionally, image recognition and classification methods can be combined with
other machine learning methods, such as deep learning and transfer learning, to further

enhance the performance of microseismic signal recognition.

However, image recognition and classification methods also face challenges and
limitations. Firstly, the image representation of microseismic waveform data requires
appropriate preprocessing methods and parameter settings to retain important feature
information and reduce the impact of noise. Secondly, the process of model training and
fine-tuning parameters often necessitates an extensive collection of annotated data along
with considerable computational power. In the domain of microseismic analysis, these
requirements can be challenging due to the constraints posed by limited data availability
and the intricate computational demands. Lastly, different types of microseismic events
may have different image representation methods and features, requiring appropriate

model design and training strategies for specific problems.
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In summary, image recognition and classification methods provide an effective
solution for microseismic signal recognition. By selecting suitable image representation
methods and models, automatic classification and recognition of microseismic waveform
data can be achieved. However, further research and exploration are still needed to
overcome challenges related to data preprocessing, labeling data requirements, and model
design, promoting the further development of image recognition and classification in

microseismic monitoring technology.
2.3 Literature Review and Related Research

In this study, relevant literature was obtained from reputable academic databases
such as Google Scholar, Web of Science, Scopus, and PubMed. Initially, a predefined set

of keywords including "microseismic event," "microseismic waveform,” "machine

learning,” "deep learning,” "image recognition,” and "image classification" was used to
index the research information. An extensive search on Google Scholar was conducted,

and studies were selected based on their significance in the field.

A thorough review of current literature is essential for comprehending the
techniques used in microseismic event waveform recognition and classification. By
examining current research, valuable insights can be drawn from previous studies to guide
future research. Table 2.1 summarizes the research objectives, methodologies, and
significant findings (or limitations) of various methods employed in this field over the
past six years, arranged in chronological order. It serves as a comprehensive reference for
researchers, covering statistics, spectral analysis, traditional machine learning, deep
learning (Ku et al., 2021), and transfer learning methods. The table illustrates the variety
of methodologies employed in microseismic event identification, ranging from traditional
methods like EEMD and SSA to decision trees, support vector machines (Cortes et al.,
1995), and convolutional neural networks. Such a variety of approaches equips
researchers with an extensive array of options, enabling them to pick the most fitting
instruments tailored to their precise demands.
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Table 2.1 Relevant studies in recent years (2018 - 2023).

Scholars

Objectives

Methods

Key Findings/Gaps

Lin et

Joint recognition and

Deep

The classification accuracy of the

al., 2018 | classification of convolutional test set was 91.13%, but further
multi-channel neural network improvement is possible with more
microseismic with spatial training data.
waveforms pyramid pooling
(DCNN-SPP)
Binder et | Detect microseismic | Convolutional Neural networks offer cost-effective
al., 2019 | events in a distributed | neural networks and automated detection of
acoustic sensing (CNNs) microseismic events.
(DAS) strain
wavefield
Bietal., | Identify and classify | A hybrid DCNN-SVM method outperformed
2019 multi-channel technique of random forests (RF) and k-nearest
microseismic DCNN and neighbors (KNN), with an accuracy
waveforms support vector rate of 98.18%.
machine (SVM)
Zhang et | Automatic Combining ELM outperformed backpropagation
al., 2019 | identification of ensemble neural networks, neural networks
microseismic data empirical mode optimized with genetic algorithms,
decomposition and SVM classification models.
(EEMD), singular
value
decomposition
(SVvD), and
extreme learning
machine (ELM)
Dong et | Identification of A CNN-based CNN demonstrated significant
al., 2020 | microseismic events | image recognition | advantages, achieving accuracy rates
and explosions in model of 99.46% for microseismic events
seismic waveforms. and 99.33% for explosions in the
test dataset.
Kang et | Classification of Deep belief The model outperformed the
al., 2020 | microseismic events | network (DBN) accuracy obtained with SVM and
and explosions Fisher classifiers, achieving 94.4%.
Peng et | Classification of Capsule network | On a limited set of training
al., 2020 | limited sample (CapsNet) examples, the method achieved a
microseismic records 99.2% accuracy rate. It
outperformed CNN and other
machine learning algorithms in
terms of effectiveness.
Song et | ldentification of CNN and Utilized the strengths of CNN in
al., 2020 | mining microseismic | Stockwell image recognition by directly
and blast signals transform-based | training on raw microseismic signal
color images images, thus eliminating the need for

extensive data preprocessing.
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Table 2.1 Relevant studies in recent years (2018 - 2023) (continued)

optimized ELM
artificial
intelligence
model (PSO-
ELM)

Scholars Objectives Methods Key Findings/Gaps
Wei et Identification of A waveform Combining waveform image
al., 2020 | microseismic events | image features extracted by PCA with the
and explosions discrimination SVM classifier accurately identifies
method using microseismic events, achieving a
principal peak accuracy of 90%.
component
analysis (PCA)
and SVM
Yietal.,, | Identification of Complete Distinct differences in sample
2020 mining microseismic | ensemble entropy values are observed between
and blast signals empirical mode microseismic and blast signals. By
decomposition integrating these values with ELM,
with adaptive the CEEMDAN_SE method
noise sample achieves a classification accuracy of
entropy 91.5%.
(CEEMDAN_SE)
Peng et | Identification of Ten machine The logistic regression algorithm
al., 2021 | microseismic events | learning methods | performs the best with an accuracy
and explosions based on six of over 95%. The quality of training
source factors. samples directly affects the model's
classification accuracy.
Bietal., | Microseismic An Compared with CNN, LSTM, RNN-
2021 waveform understandable FCN, and ResNET, XTF-CNN
categorization time-frequency obtains excellent performance and
convolutional outstanding interpretability.
neural network
(XTF-CNN)
Jiang et | Identification of An improved This approach minimized the
al., 2021 | mining microseismic | Hilbert-Huang operator's influence on
and blast signals transform is classification, enhancing both the
adopted to reveal | accuracy and efficiency of mass
the time- spectrometry signal data
frequency identification in spectral monitoring
spectrum (HHS) | technology applications.
Peng et | Identify effective Deep DCNN-Inception algorithm
al., 2021 | microseismic signals | convolutional outperformed CNN in recognition
neural network accuracy.
Inception
(DCNN-
Inception)
Rao et Discriminating Particle swarm Compared to the original ELM
al., 2021 | microseismic events optimization model and other models (BPNN,
and mine blasts (PSO) algorithm | NBC, and FDA), PSO-ELM showed

the best discrimination performance.
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Table 2.1 Relevant studies in recent years (2018 - 2023) (continued)

Scholars

Objectives

Methods

Key Findings/Gaps

Tang et

Identification

CNN combined

The model refines CNN's

classification

natural network
(ECNN) based on
the ACGAN
structure

al., 2021 | microseismic events | with an attention | intermediate data to increase
mechanism efficiency without a significant rise
in parameters or computational load.
Applied to multiple channels, it
achieves the best results.
Zhao et Identification of A hybrid model Compared with CNN, LSTM, BP,
al., 2021 | microseismic signals | combining SVM, decision tree (DT), KNN, and
(three types: singular spectrum | linear discriminant analysis (LDA),
microseismic, blast, analysis (SSA), this model achieved higher
and mechanical) CNN, and long recognition accuracy.
short-term
memory network
(LSTM)
Ding et Mine microseismic Neural network The enhanced T-SimCNN model,
al., 2022 | event recognition combined with utilizing transfer learning, attained a
transfer learning | 95% accuracy rate in identifying
microseismic occurrences.
Fan et Discriminating Wavelet Each signal's scattering coefficients
al., 2022 | microseismic events | scattering demonstrated their aptness for
from noise. decomposition serving as distinctive features in the
(WSD) transform | training of specialized models.
and SVM
Jiaetal., | Classification of VGGnet, ResNet, | The findings indicated that the
2022 three-channel seismic | and Inception classifier's performance metrics,
full-waveform time both in terms of recall and precision,
series and spectral surpassed the 90% threshold.
data (three classes:
earthquakes, blasting,
and mine collapses)
Lietal.,, | Recognition and Deep learning The individual models exhibited
2022 classification of models, including | strong performance on the raw
microseismic VGG16, waveform image dataset, achieving
waveform images and | ResNet18, 96% accuracy for AlexNet, 98% for
spectrograms AlexNet and their | VGG16, 96% for ResNet18, and an
ensemble models. | ensemble model reaching 98%
accuracy.
Wang et | Microseismic Enhanced The research examined the impact of
al., 2022 | waveform convolutional varying training sample sizes on

both ECNN and conventional
CNN:s. It revealed that classification
accuracy for both types of models
stabilizes at a count above 1024
samples and experiences a sharp
decline when the sample size is
reduced below 512,

31




Table 2.1 Relevant studies in recent years (2018 - 2023) (continued)

time-domain
information and
wavelet packets
decomposition
coefficients (T-

Scholars Objectives Methods Key Findings/Gaps
Wang et | Identifying A dual-channel The wavelet packet decomposition
al., 2022 | microseismic events | CNN modelwith | technigque accentuates the intrinsic

properties of signals and effectively
diminishes the impact of noise.
Experimental data suggests that the
T-WPD CNN model outperforms
standard CNN in reliability and

microseismic event
waveforms

models (AlexNet,
GoogLeNet, and
ResNet50)

WPD CNN). robustness against noise
interference.
Zhu et Discriminating Proposed an Deep learning enables accurate
al., 2022 | earthquakes and application identification of seismic events
quarry blasts. strategy that using raw waveforms, and the
combines deep utilization of transfer learning allows
learning and for effective generalization of deep
transfer learning | learning models across various
locations.
Chen et | Microseismic signal | Conv-LSTM- The Conv-LSTM-Unet model
al., 2022 | detection. Unet is a deep utilizes a semantic segmentation
learning model approach to more effectively capture
which utilizes the spatiotemporal features of
convolutional microseismic data.
neural networks
and long short-
term memory
networks
Lietal.,, | Microseismic A modified The revised model recognized 13
2023 waveform LeNet5 CNN forms of MS from real data with a
recognition maximum accuracy of 98%, an
increase of 10% over the original
model.
Ma et Recognition and Deep learning STFT time-frequency analysis
al., 2023 | classification of techniques and reveals unique characteristics of
microseismic signals | short-time noise, microseismic, and blasting
Fourier transform | signals, enabling precise temporal
(STFT) differentiation from noise signals
technologies that closely resemble microseismic
events.
Dong et | Recognition and CNN-based Four categories of microseismic
al., 2023 | classification of transfer learning | event datasets were created, and

transfer learning was applied to pre-
trained models. GooglLeNet
demonstrated the highest overall
performance, achieving a
recognition accuracy of 99.8%.
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2.3.1 Traditional Identification Methods

In the field of microseismic signal recognition, several traditional recognition
methods have been proposed and applied in practical engineering. These traditional
recognition methods primarily include manual identification, correlation analysis, and

spectral analysis.
e Manual Identification:

Manual identification is one of the earliest and most commonly used methods
for microseismic signal recognition (Peng et al., 2021). This method relies on experts in
the field who observe and analyze waveform data to determine the occurrence of
microseismic events (Dong et al., 2020). Manual identification methods require
experienced professionals and are time-consuming and labor-intensive, but they can still
be effective in certain cases. However, due to subjectivity and individual differences,
manual identification methods suffer from issues such as inconsistent recognition results

and uncertainty in labeling data (Jiang et al., 2023).
o Correlation Analysis:

Correlation analysis is another commonly used traditional recognition
method, which determines whether different microseismic signals have similar features
or shared structures by calculating their correlations (Shang et al., 2017). Correlation
analysis methods can be applied to time-domain or frequency-domain data and utilize
cross-correlation or autocorrelation functions for computation (Caffagni et al., 2016; Wu
et al., 2016). These methods help capture the similarity or correlation between signals for
recognition and classification. However, correlation analysis methods are sensitive to
signal noise and may have high computational complexity when dealing with large-scale
data.

e Spectral Analysis:

Spectral analysis is a common traditional recognition method that utilizes the
frequency-domain characteristics of signals for classification or identification (Li et al.,
2021). Spectral analysis methods calculate the spectral information of signals using
Fourier transform or other spectral estimation techniques and extract frequency features

for recognition (Fagan et al., 2013). Common spectral features include spectral energy,

33



dominant frequency components, and spectral shape (Li et al., 2018). Spectral analysis
methods effectively capture the frequency characteristics of signals but may not be as

sensitive to time-domain and time-frequency domain features.

In addition to traditional identification methods, numerous research works have
been dedicated to improving the recognition performance of microseismic signals. Some
of these studies focus on enhancing feature engineering techniques to extract more
discriminative features (Mousavi et al., 2016). For instance, methods like wavelet
transform, singular value decomposition, and adaptive filtering have been employed to
extract features from microseismic signals and utilize them for classification using
classifiers (Shu et al., 2022). Other studies concentrate on improving machine learning
algorithms such as support vector machines (Foody et al., 2004), random forests, and
deep learning (Y. Fu et al., 2020) to enhance the accuracy and robustness of microseismic

signal classification (Shu et al., 2023).

Overall, while traditional methods like manual identification, correlation analysis,
and spectral analysis have laid the foundation for microseismic signal recognition,
advancements in feature extraction techniques and machine learning algorithms are

continuously improving the precision and reliability of these recognition systems.
2.3.2 Statistical Methods

During the late 20th and early 21st centuries, various statistical methods were
employed to construct classification models for microseismic events (Cao et al., 2009).
These methods include regression analysis (Vallejos et al., 2013), discriminant analysis
(Dong et al., 2016), principal component analysis (PCA) (Shang et al., 2017), and support
vector machines (SVM) (Bi et al., 2019; Ding et al., 2019). As microcrack energy is
released in the form of seismic waves in rocks and blasting is an artificially induced active
seismic source (Holtzman et al., 2018), these two types of signals possess distinct source
parameters. However, despite this distinction, parameter extraction and model selection
still heavily rely on researchers' subjective experience, which can affect the accuracy of
classification models. Moreover, disregarding the correlation between parameters may
result in inadequate classification. Therefore, before constructing a classification model,

each parameter must be thoroughly analyzed, considering its correlation with other
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variables and its applicability in specific models. This process inevitably increases

computational time.

When constructing classifier models, a common approach is to extract key
parameters from raw waveforms or seismic sources to create event classifiers that can
differentiate between different events in microseismic data. These parameters include
waveform features across the time and amplitude domains. Key parameters, such as time
and frequency variation parameters (Sugondo et al., 2021), spectral ratios, maximum
frequency, P-wave and S-wave (Li et al., 2023) amplitude ratios, signal duration, first
peak amplitude, and maximum peak arrival time, can be obtained through waveform
correlation analysis. Additionally, some feature parameters can be extracted from seismic
sources, such as seismic moment, seismic energy, event occurrence time, stress drop,
sensor trigger counts, and corner frequency. These feature parameters aid in
distinguishing different types of microseismic events and provide crucial input
information for classifier models (Dong et al., 2016).

This research (Orlic et al., 2010) employed a specially designed genetic algorithm
to autonomously search for an approximately optimal set of seismic waveform features
and applied this method to classify natural earthquakes and anthropogenic events (blast
events). The method was validated on a collection of seismic waveforms consisting of 60

local earthquake waveforms and 60 blast waveforms, achieving an accuracy rate of 85%.
2.3.3 Machine Learning Classification Methods

In addition to traditional recognition methods, machine learning classification
methods have also been widely applied to the identification and classification of
microseismic signals. Machine learning utilizes a data-driven approach to automatically
learn and recognize different types of microseismic signals through training models.
Remarkable advancements and implementations have been observed in specific domains
such as image recognition, speech recognition, signal processing, and computer vision
(Wei et al., 2020). Commonly used machine learning classification methods include SVM,
Random Forests, k-Nearest Neighbors (KNN), decision trees, artificial neural networks
(Zhang et al., 2023), CNN, and DNN (Wamriew et al., 2021). In the context of

microseismic signal recognition and classification, machine learning can be categorized
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into two main branches: supervised learning (Feng et al., 2022; Qu et al., 2020) and
unsupervised learning (Johnson et al., 2020; R. Liu, 2021).

Next, we will delineate the evolutionary trajectory of machine learning applications

within the sphere of microseismic event detection and categorization:
1. Shallow Machine Learning Methods

Early research primarily employed shallow machine learning methods such
as SVM, random forests, KNN, and decision trees. These methods extract features from
microseismic signals and construct classifier models to achieve the identification and

classification of microseismic events.

For instance, This research (Vallejos et al., 2013) used logistic regression and
neural networks for the classification of seismic records, achieving accuracies exceeding
95% at their respective optimal decision thresholds. Zhao et al. (2015) conducted research
to identify discriminative features for classifying mine seismic events in seismic graphs.
They established a signal database based on manually identified blast and microseismic
event signals. Addressing the challenge of inaccurate picking of P-wave arrivals (Chen et
al., 2022; Chen, 2020; Guo et al., 2021), they proposed using the slope value of the
starting trend line obtained through linear regression as a substitute for the angle. Two
slope values associated with the coordinates of the first peak and the maximum peak were
extracted as characteristic parameters. A statistical model, utilizing Fisher discriminant

analysis, was established with an accuracy exceeding 97.1%.

This research (Dong et al., 2016) utilized random forests, support vector
machines, and naive Bayes classifiers for the classification of microseismic events and
blasts. The research findings showed that the random forest model not only achieved
higher accuracy in automatic classification but also ranked discriminators based on
computed weight values. This study (Jiang et al., 2020) introduces a novel approach that
combines the improved complete ensemble empirical mode decomposition with adaptive
noise (I-CEEMDAN), singular value decomposition (SVD), and the k-nearest neighbors
algorithm for microseismic signal classification. The I-CEEMDAN and SVD techniques
are employed to automatically extract relevant features, while the KNN algorithm is

utilized for automated classification of microseismic and blasting signals.
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2. Deep Learning Methods

Deep learning has become a potent instrument for image recognition of
microseismic event waveforms (Wang et al., 2021). The procedural diagram of image
recognition, including conventional machine learning strategies and advanced deep
learning algorithms is depicted in Figure 2.3. Specifically, convolutional neural networks
are utilized as the deep learning model, incorporating multiple stacked convolutional
layers and pooling layers to extract local and global features from waveform data. These
features encompass vital information, including waveform shape, frequency, and
temporal characteristics. The subsequently extracted features are then input into fully
connected layers for the recognition and classification of microseismic events.

Characteristics of shallow machine learning methods include (1) the necessity
for manual feature engineering, entailing the selection and design of pertinent features for
the specific problem; (2) lower data requirements, making them susceptible to overfitting
when working with smaller datasets; (3) quicker computation speed and relatively
straightforward training processes; (4) challenges in capturing intricate nonlinear

relationships when faced with limited feature expression capabilities.
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In comparison, deep learning methods present notable advantages in the
realm of microseismic event image recognition. Primarily, they can autonomously discern
intricate patterns and features from waveform data, eliminating the need for manual
feature engineering. Additionally, deep learning models can systematically abstract
features by extracting both low-level local characteristics and high-level global features,
facilitating a more precise comprehension and representation of semantic information in
microseismic event waveforms. Furthermore, deep learning leverages extensive dataset
training, contributing to improved accuracy and generalization capabilities (He et al.,
2022) when addressing noise and variability in microseismic event recognition tasks.
However, it is important to acknowledge that deep learning methods may demand more
computational resources and time due to the training process involving multiple layers of

neural networks.
3. Transfer Learning Methods

Transfer learning methods have been proven effective in reducing the need
for a large amount of labeled data and speeding up the training process (Ding et al., 2022;
Dong et al., 2023; Wang et al., 2022). They allow us to leverage knowledge learned from
rich general image datasets and apply it to the specific task of microseismic event
recognition. By incorporating transfer learning techniques into our workflow, we can
enhance the performance and efficiency of deep learning models in microseismic event

waveform image recognition tasks.

Therefore, transfer learning methods offer a powerful solution for
microseismic event waveform image recognition. By utilizing pre-trained models,
performing feature extraction, and addressing domain shifts, we can enhance the

performance and adaptability of deep learning models in microseismic event recognition.
2.3.4 Hybrid Optimization Methods

Hybrid optimization methods play an important role in microseismic event
recognition and classification, combining different optimization techniques and
algorithms to improve model performance and efficiency. For example, in this paper
(Peng et al., 2020), an automatic classification method based on deep learning is proposed
for identifying suspicious microseismic events in underground mines. Using a genetic

algorithm-optimized correlation-based feature selection, 11 representative features are
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selected from the extracted time and frequency domain features. By dividing
microseismic records into frames and utilizing an 11x50 feature matrix as input, a
convolutional neural network with 35 layers is trained on 20,000 samples, achieving a
98.2% accuracy in correctly determining the event type, surpassing traditional machine
learning methods. GA evolves candidate solutions within a population using principles
inspired by natural selection and genetic operations, gradually finding better solutions.
This hybrid optimization strategy accelerates model convergence and improves

optimization performance in microseismic event recognition tasks.

In another study (Rao et al., 2021), the PSO-ELM model, based on the particle
swarm optimization (PSO) algorithm and extreme learning machine (ELM), was
successfully applied to discriminate microseismic events and blasts in mines,
demonstrating its superior performance compared to other intelligent discrimination
models, thus providing a promising method for ensuring mine safety and smooth
operation.

In addition, hybrid optimization approaches also integrate traditional machine
learning algorithms with deep learning models (Azevedo et al., 2024). Traditional
machine learning algorithms excel in feature extraction and classification tasks, while
deep learning models are proficient at learning feature representations from raw data. By
using traditional machine learning algorithms for feature engineering and dimensionality
reduction, followed by utilizing the extracted features as input for deep learning models,
the strengths of both approaches can be fully leveraged to enhance microseismic event
recognition performance and efficiency.

For instance, a study (Li et al., 2021) proposed an interpretable deep learning model
that utilizes three-dimensional attention maps and high-resolution spectral analysis to
improve the accuracy and efficiency of seismic phase analysis, as well as reveal subtle
relationships between geology and seismic spectra. The experimental results demonstrate
that this trainable deep dilated convolutional neural network (ADDCNN), based on soft
attention mechanisms, achieves improvements in classification accuracy, computational

efficiency, and optimization performance while reducing model complexity.

In conclusion, the application of hybrid optimization methods holds significant

importance in microseismic event recognition and classification. By combining
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techniques such as Genetic Algorithms, gradient optimization, metaheuristic algorithms,
and traditional machine learning algorithms with deep learning models, we can further
improve the performance and generalization ability of models, addressing the challenges
in microseismic event analysis. The development of these hybrid optimization methods
continues to drive progress in the field, providing effective solutions for more accurate

and reliable microseismic event recognition.

24 Summary

The development of microseismic signal identification and classification methods
highlights three notable trends: (1) the integration of machine learning methods, (2) the
emergence of deep learning models, and (3) the amalgamation of hybrid models and

algorithm optimization. Each developmental stage has distinct characteristics.

Firstly, the introduction of machine learning methods significantly alleviates the
burden of traditional manual identification and classification of microseismic signals,
thereby improving signal processing efficiency. By utilizing machine learning algorithms
for tasks such as feature extraction, classification, and clustering, the analysis of a large
volume of microseismic data can be automated, reducing human intervention and
enhancing speed and accuracy. This trend makes microseismic event monitoring and

analysis more feasible and efficient.

Secondly, with the advent of deep learning models, it becomes feasible to cultivate
more accurate classification models by leveraging extensive collected data, significantly
improving the accuracy and reliability of microseismic signal identification and
classification. Deep learning models possess strong learning and representation
capabilities, enabling them to automatically learn complex feature representations and
train high-performance models on large-scale datasets. Through deep learning models,
key features in microseismic signals can be better captured, leading to more precise

identification and classification.

Lastly, the optimization of models and algorithms aims to achieve higher
computational efficiency while maintaining high accuracy or shifting the focus towards
improving model generalization and robustness. By employing hybrid models and
algorithm optimization techniques such as genetic algorithms, metaheuristic algorithms,

and ensemble learning, the strengths of different approaches are combined to enhance the
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performance and efficiency of microseismic event identification and classification tasks.
Furthermore, parameter tuning and algorithm optimization play a crucial role in
improving system performance. These optimization methods aim to improve
computational efficiency, reduce computational costs, and enable models to adapt to

various data and scenarios.

In conclusion, the development of microseismic signal identification and
classification methods exhibits three important trends: the integration of machine learning
methods, the emergence of deep learning models, and the amalgamation of hybrid models
and algorithm optimization. These trends drive advancements in the field of microseismic
event analysis, providing more reliable and efficient solutions for automated processing

and accurate determination of microseismic events.
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CHAPTER 3

DATA AND METHODOLOGY

3.1 Introduction

This study aims to achieve rapid and accurate identification and classification of
microseismic signals in the mining environment. The research encompasses computer
vision techniques and machine learning algorithms, primarily utilizing data from metal
mines. Initially, microseismic signals are transformed into event waveform images.
Utilizing computer vision techniques such as image processing, recognition, and
classification, databases of different event waveform images are established.
Subsequently, machine learning algorithms, including SML, CNN, and DNN, are
employed. These algorithms are trained using sample databases from different mining
areas to obtain the optimal model, thereby improving the accuracy and timeliness of

microseismic signal identification and classification.

To ensure the reliability and effectiveness of the research, extensive testing will be
conducted using a large dataset of real microseismic signal data. A comprehensive
evaluation of the model's performance will be carried out by comparing it with existing
research methods and image classification models. Performance metrics such as accuracy,
recognition duration, precision, recall, and F1 score will be used to select the best-
performing model. The ultimate goal is to provide more reliable and intelligent technical
support for microseismic monitoring (Chen et al., 2022) and mining safety research,

promoting the intelligent transformation and safe development of mining operations.

This chapter provides a comprehensive overview of the experimental dataset,
methodology, and the foundational principles guiding the research. It begins with an
introduction to the data collection environment, equipment used, waveform

characteristics of microseismic monitoring events, and the data preprocessing process.
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Subsequently, it details the commonly used machine learning methods and their
principles, as well as the specific models employed in this study. Finally, the chapter

concludes with an overview of the metrics used to evaluate the models.
3.2 Data
3.2.1 Data Collection

The datasets used in this study were collected from three different mines located in
Baoji City, Shaanxi Province, China (as shown in Figure 3.1). These mines, namely A,
B, and C, are situated in different villages within Feng County. Mine A is located in
Pingkan Town, with geographical coordinates ranging from 106°55' to 106°58' east
longitude and 33°54' to 33°57' north latitude. The mining area stretches from Yanjiaping
in the west to Hetougou in the east, and from Yindonggounao in the north to Sihao
Gounao in the south, covering an area of 16 square kilometers. It is a large-scale ductile
shear-type gold deposit. Mine B is situated in Yinmusi Village, Pingkan Town, and is a
lead-zinc mine. Mine C, located in Liufengguan Village, Liufengguan Town, is also a
lead-zinc mine with a mining area of 0.95 square kilometers. The environmental
disparities among these mines inevitably introduce variations in the characteristics of the

collected microseismic monitoring data.
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Figure 3.1 Geographical locations of the microseismic monitoring data sources.
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The data collection process involved the use of specialized equipment and software
systems for microseismic monitoring. In terms of hardware, signal detectors (sensors) and
data acquisition devices (base stations) were strategically deployed in key areas within
each mine to capture microseismic signals generated during mining operations. These
sensors were responsible for the real-time recording of microseismic events, with the
captured signals transmitted to the base stations. The base stations, in turn, received and
transmitted the signals to the central monitoring system. Taking Mine A as an example,
based on the safety monitoring requirements of the mine, a total of 26 sensors were
installed at different depths in five working sections. These sensors are connected to seven
sub-collection systems and ultimately linked to the central processing system via optical

fibers. The sampling frequency range for each sensor is from 50 Hz to 8000 Hz.

In addition to the hardware equipment, dedicated software systems were utilized for
microseismic monitoring. Figure 3.2 displays the software and hardware infrastructure of

the microseismic monitoring system used in the mines.
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Figure 3.2 Software and hardware infrastructure of the microseismic monitoring system

at Central South University.

These software systems enabled real-time acquisition, processing, and analysis of
microseismic signals. They provided a comprehensive suite of tools and functionalities
for visualizing and interpreting the collected data. Overall, the datasets used in this study
were obtained through the integrated application of advanced hardware infrastructure and
software systems. This ensured the reliability and usability of the dataset for further

analysis and model development.
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3.2.2 Data Preprocessing

Previous studies have shown that if fewer than four sensors are triggered during
event detection, there will be insufficient known parameters to accurately calculate the
location of the microseismic source and other key information (Dong et al., 2011). As
more sensors simultaneously detect the signal, the reliability of the microseismic events
also increases when evaluating their validity. To ensure the complete validity of events,
we chose events captured by at least six sensors. Therefore, during data preprocessing,
we set a criterion: only when a microseismic event detected by at least six sensors is
triggered, it is considered a valid event. Otherwise, the signal will be filtered out.
Considering the high accuracy of image classification and the widespread application of
computer vision techniques, this study uses event waveforms as inputs for classification
and recognition. We input the images on an event-by-event basis, with each image
containing six waveforms to differentiate individual valid events. We demonstrate the
waveform data sorted by signal capture and ultimately generate the output of six-subplot

event waveforms.

We use the Python plotting library (Matplotlib) to plot event waveforms from the
data collected by the sensors. Based on waveform characteristics and engineering
expertise, microseismic and blasting events constitute the most critical part of the raw
dataset. Furthermore, noise events comprise a significant portion of the recorded data,
with rock-cutting events being particularly frequent. By "converting noise into use," we
combine the waveform plots of the raw dataset with engineering experience to create
three databases, A, B, and C, consisting of four different categories of events:
microseismic events, blasting events, rock drilling events, and noise events. Each event
is treated as a separate unit. Figure 3.3 displays the typical results of these four types of
event waveforms. In each subplot of the figure, the horizontal axis represents Time (ms)
and the vertical axis represents Amplitude (V). These events exhibit unique waveform
characteristics.
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Figure 3.3 Examples of 6-channel waveform images for four-type microseismic

monitoring events.

e Microseismic events appear as a single continuous waveform with low

amplitude, low frequency, short duration, and rapid attenuation, as shown in Figure 3.3(a).

e Blasting waveforms vary depending on the time interval between
explosions and feature recurring peaks. They are typically characterized by high
amplitude, high-frequency signals with long duration and significant signal variations.
Blast signals usually evolve from a rapid initial decay without a developed tail wave to a

slow, developed tail wave, as shown in Figure 3.3(b).

o Dirilling event waveforms exhibit repetitive periodic vibrations, reflecting

the operating impact frequency of drilling equipment, as shown in Figure 3.3(c).

¢ Noise events, due to their numerous and diverse sources, result in different
waveforms: (1) chute release signals, recording small-amplitude oscillations within the

main amplitude, usually detected by sensors close to the chute; (2) scraper operations,
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continuous waveform events lasting two to three seconds; (3) fan vibrations, typically
characterized by unordered continuous waveforms, detectable by sensors near the fan; (4)
power disturbance signals, typically represented as continuous waveforms with large
amplitudes, short rise times, simple oscillation patterns, and no attenuation characteristics,
as shown in Figure 3.3(d). These signals are mainly received by sensors located close to

the power source.

After obtaining the event waveform sample databases for each mine, we divide the
samples into training sets (80%) and testing sets (20%) in a 4:1 ratio to ensure consistency
between the training and testing samples for each model (Brownlee, 2016). The training
set is used to train the machine learning models, while the testing set is used to evaluate
the performance of the trained models on unseen data. Table 3.1 provides detailed

information about the A, B, and C mine datasets used in this study.

Firstly, each dataset comes from a different mining area, so there will be some
differences in geological characteristics and data features. This effectively tests the
model's generalization and robustness. Secondly, datasets A and C have relatively long-
time spans, covering nearly two years of data, while dataset B has a shorter time span of
about five months. Lastly, the sample sizes of datasets A and B are similar, while dataset
C h