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 อาจารย ์ดร.นเรศ สุยะโรจน์       อาจารยท่ี์ปรึกษาร่วม 

บทคดัย่อ 

การประยุกตใ์ชว้ิธีการเรียนรู้ของเคร่ืองและเทคโนโลยีคอมพิวเตอร์วิทศัน์ช่วยให้เกิดการจดจ า
และจ าแนกเหตุการณ์แผ่นดินไหวขนาดเล็กในระบบตรวจสอบการสั่นสะเทือนแบบไมโครของ
เหมืองอยา่งชาญฉลาด ส่ิงน้ีช่วยใหส้ามารถสร้างผลการจ าแนกประเภทไดอ้ย่างรวดเร็วและแม่นย  าลด
ภาระงานและอัตราการตัดสินท่ีผิดพลาดในการระบุเหตุการณ์แผ่นดินไหวขนาดเล็กด้วยตนเอง         
ในขณะเดียวกนัสามารถใชเ้ป็นหลกัฐานในการตีความส าหรับระบบเตือนภยัพิบติัของทุ่นระเบิดและ
การแจง้เตือนอยา่งทนัท่วงทีส าหรับกิจกรรมแผน่ดินไหวท่ีอาจเกิดขึ้น 

ระบบตรวจวดัแผ่นดินไหวขนาดเล็กมีบทบาทส าคญัในการตรวจสอบ การเตือนภยัล่วงหน้า 
และการป้องกันภยัพิบติัจากการระเบิดของหินในเหมือง อย่างไรก็ตาม เม่ือมีการสร้างข้อมูลการ
ตรวจสอบจ านวนมาก การระบุประเภทของเหตุการณ์แผ่นดินไหวขนาดเลก็ท่ีแตกต่างกนัอยา่งรวดเร็ว
และแม่นย  าแบบเรียลไทม์ได้กลายเป็นข้อก าหนดพื้นฐานส าหรับการป้องกันภัยพิบติัและการท า
เหมืองอจัฉริยะ บทความน้ีน าเสนอวิธีการท่ีใช้การเรียนรู้ของเคร่ืองเพื่อจ าแนกและระบุเหตุการณ์
แผน่ดินไหวขนาดเลก็โดยอตัโนมติัโดยใชเ้ทคโนโลยทีางดา้นขอ้มูลมหัต  

ขั้นแรก ขอ้มูลแผ่นดินไหวขนาดเล็กท่ีรวบรวมโดยระบบตรวจสอบจะถูกแปลงเป็นกราฟ
รูปคล่ืนดิบ โดยแต่ละเหตุการณ์จะแสดงด้วยชุดของกราฟย่อย 6 กราฟเป็นภาพตวัอย่าง ชุดขอ้มูล
ตวัอย่างของเหตุการณ์ส่ีประเภท ไดแ้ก่ เหตุการณ์แผ่นดินไหวขนาดเล็กท่ีเกิดจากเหมือง การระเบิด 
การเจาะหิน และเสียงรบกวน จะถูกสร้างขึ้นผ่านการระบุดว้ยตนเอง จากนั้น Histogram  of  Oriented 
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Gradients (HOG) พร้อมดว้ยอลักอริทึมการเรียนรู้แบบต้ืน (เช่น ตวัจ าแนกเชิงเส้น การแยกแยะของ
ฟิชเชอร์) โมเดลเครือข่ายประสาทเทียมแบบคอนโวลูชนั (CNN) และโมเดลการเรียนรู้เชิงลึกท่ีอิงตาม
การเรียนรู้การถ่ายโอน (เช่น MobileNet-V2, Inception-V3) จะถูกเลือก โมเดลเหล่าน้ีจะสกัด
คุณลักษณะจากภาพรูปคล่ืนท่ีแตกต่างกันโดยอัตโนมัติและสร้างโมเดลการจ าแนกประเภทภาพ
ส าหรับการจดจ าเหตุการณ์แผน่ดินไหวขนาดเลก็อยา่งชาญฉลาด  

การทดลองด าเนินการบนชุดขอ้มูลเดียวกนัเพื่อเปรียบเทียบประสิทธิภาพการจ าแนกประเภท
และความแม่นย  าในการจดจ าของโมเดลทั้งส่ี ผลการทดลองแสดงให้เห็นว่าความแม่นย  าโดยรวมของ 
HOG-SVM, MS-CNN, ResNet-18, MobileNet-V2 และ Inception-V3 บนชุดทดสอบอยู่ ท่ี  0.971, 
0.974, 0.981, 0.982 และ 0.987 ตามล าดบั เม่ือเทียบกบัวิธีการวิจยัท่ีมีอยู่ บทความน้ีไม่เพียงแต่รวมถึง
การจดจ าเหตุการณ์แผ่นดินไหวขนาดเล็กและการระเบิดเท่านั้น แต่ยงัระบุเหตุการณ์การเจาะหินและ
เสียงรบกวนอ่ืน ๆ ไดอ้ย่างมีประสิทธิภาพ ซ่ึงให้การระบุรูปคล่ืนแผ่นดินไหวขนาดเล็กท่ีชดัเจนและ
แม่นย  ายิง่ขึ้น 

การประยุกต์ใช้วิธีการเรียนรู้ของเคร่ืองและเทคโนโลยีคอมพิวเตอร์วิทศัน์ช่วยให้บรรลุการ
จดจ าและการจ าแนกประเภทเหตุการณ์แผ่นดินไหวขนาดเล็กอย่างชาญฉลาดในระบบตรวจวดั
แผ่นดินไหวขนาดเล็กของเหมือง ซ่ึงช่วยให้สามารถสร้างผลลพัธ์การจ าแนกประเภทไดอ้ย่างรวดเร็ว
และแม่นย  า ลดภาระงานและอตัราการตดัสินใจผิดพลาดของการระบุเหตุการณ์แผน่ดินไหวขนาดเล็ก
ดว้ยตนเองไดอ้ย่างมีประสิทธิภาพ ในขณะเดียวกนั ยงัให้หลกัฐานท่ีสามารถตีความไดส้ าหรับระบบ
เตือนภยัพิบติัในเหมืองและการแจง้เตือนอยา่งทนัท่วงทีส าหรับกิจกรรมแผ่นดินไหวท่ีอาจเกิดขึ้น  
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ABSTRACT 

Microseismic monitoring system plays an important role in the monitoring, early 

warning, and prevention of mining-induced ground pressure disasters. These systems 

integrate functions such as collecting, locating, analyzing, and interpreting seismic 

activities induced by microcracks within rock masses. However, with the generation of a 

large amount of monitoring data, the rapid, accurate, and real-time identification of 

different types of microseismic events has become a fundamental requirement for disaster 

prevention and control, as well as for the construction of smart mines. 

This paper proposed different automatic identification and classification models for 

microseismic events using machine learning technology, based on data mining and 

analysis. The aim is to improve the efficiency and accuracy of microseismic data analysis, 

thereby providing a solid foundation for geostress disaster management and the 

advancement of smart mining systems. 

Firstly, microseismic data collected by monitoring systems from three different 

mines in Shaanxi Province, China, were processed into raw waveform images, with each 

event consisting of six sub-graphs forming a sample graph. Based on expert experience
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and manual identification, three sample databases including four types of events—mining 

microseisms, blasting, drilling, and noise—were established, resulting in diverse datasets. 

Subsequently, this paper employed various advanced algorithms and models to 

automatically extract features from different waveform images and construct an 

intelligent identification system for microseismic events. Specifically, methods 

combining Histogram of Oriented Gradients (HOG) features with Shallow Machine 

Learning (SML), Convolutional Neural Networks (CNN), and transfer learning-based 

deep learning models such as ResNet-18, MobileNet-V2, and Inception-V3 were 

selected. 

Experiments were conducted using the three sample databases, and the 

classification performance and recognition accuracy of different models were compared. 

The results showed that on the test dataset A, the overall accuracy of the HOG-SVM, MS-

CNN, ResNet-18, MobileNet-V2, and Inception-V3 models reached 0.971, 0.974, 0.981, 

0.982, and 0.987, respectively. Comparative analysis of the models revealed that deep 

learning models, especially Inception-V3, outperformed others in terms of accuracy, 

demonstrating the potential of deep learning in classifying microseismic events. The 

HOG-SVM method demonstrated the fastest processing efficiency. The MS-CNN model 

achieved an effective balance between recognition efficiency and classification accuracy. 

This study introduces an innovative, efficient, and precise approach for intelligently 

identifying microseismic events. It offers a comparative analysis of machine learning 

methods, aiding users in choosing the right algorithms for their tasks. The research 

expands beyond microseismic and blasting event identification to include drilling and 

noise events, enhancing the intuitive and precise recognition of waveforms. The models' 

adaptability across various mining data showcases their potential to boost mine safety and 

operational intelligence in real-world scenarios. 

The application of machine learning methods and computer vision technology helps 

achieve intelligent recognition and classification of microseismic events in the 

microseismic monitoring system of mines. This enables the rapid and accurate generation 

of classification results, effectively reducing the workload and misjudgment rate of 

manual identification of microseismic events. At the same time, it provides interpretable 
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evidence for the mine disaster warning system and timely alerts for potential seismic 

activities.
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

With the profound integration of information technologies like the Internet of 

Things (IoT) (Abdalzaher et al., 2022), big data (Arrowsmith et al., 2022), and artificial 

intelligence (AI) (Anikiev et al., 2023), smart mining is gradually becoming a reality 

(Barnewold et al., 2020). Notably, the microseismic monitoring technique, which relies 

on acoustic emission and seismology (Dong & Li, 2023), plays an increasingly pivotal 

role in monitoring mine safety (Di et al., 2023). It continues to address a growing range 

of issues with improving effectiveness. Its main applications encompass monitoring and 

providing early warnings for coal mining-induced rock bursts (Zhang et al., 2021), mine 

seismicity (Wang et al., 2023), metal mine goaf (Dong et al., 2022), deep mining, and 

slope stability studies (Iannucci et al., 2020; Li et al., 2021). 

The microseismic monitoring system (MMS) in smart mining integrates 

microseismic signal acquisition, multi-channel clock synchronization, noise suppression, 

automated picking of arrival times, source localization, and analysis and interpretation of 

stress-induced micro-cracks within the rock mass (Dong et al., 2016;  He et al., 2023). By 

employing quantitative seismological methods, it becomes feasible to calculate source 

parameters such as origin time, location (Dong et al., 2020), and magnitude, as well as 

frequency-domain characteristics and source mechanisms. Based on these calculations, 

the spatiotemporal evolution process of microseismic events can be described, enabling 

monitoring and early warning of potential disasters (Du et al., 2021; Feng et al., 2015; Li 

et al., 2023). 

MMS generally consists of sensors, data acquisitors, communication units, data 

control center, GPS timing devices, signal cables, optical fibers, and monitoring stations, 

as shown in Figure 1.1. Compared to traditional rock mass monitoring methods, the 

microseismic monitoring system has four major advantages: (1) Real-time monitoring:
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continuous collection of on-site microseismic signals for 24 hours; (2) Comprehensive 

three-dimensional monitoring: fully digitalized data acquisition, storage, and processing; 

(3) Automated spatial localization and display: automatic collection, localization, and 

display of microseismic signals; (4) Remote transmission and monitoring of information: 

remote collaboration and monitoring through internet connectivity, enabling visualization 

and analysis on multiple user computers. 

 

Figure 1.1 Composition of microseismic monitoring system 

The signals collected by existing microseismic monitoring systems are diverse and 

vary in nature. Previous research has mostly focused on two categories: microseismic 

events and blasting events. However, in practical mining environments, signals are not 

limited to these two categories but also include rock drilling, fan noise, power 

interference, and other sources of noise. In this work, the research objects in mining are 

divided into four main categories: (1) blasting events, (2) microseismic events, (3) rock 

drilling events, and (4) other noise events. Blasting events refer to signals directly caused 

by shock waves generated from explosive detonations resulting in rock fragmentation 
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(Dong et al., 2016). Microseismic events are seismic phenomena resulting from structural 

instability caused by rock deformation (Cui et al., 2023) and internal crack propagation. 

Rock drilling events involve engineering operations where holes are drilled into rocks (or 

ore bodies), resulting in event signals. Noise events primarily include background noise, 

ore chute discharge, shovel operation, fan vibration, power interference, and other signals 

that cannot be attributed to blasting, microseismic, or rock drilling. 

 

Figure 1.2 Frequency range of earthquakes, rock bursts, microseismic events, and 

acoustic emission 

The analysis of microseismic events is based on accurate and clean microseismic 

monitoring signals, requiring the exclusion of interference signals from blasting, rock 

drilling, and noise before analysis. Although microseismic monitoring systems have been 

successfully applied in rock stability analysis, it remains challenging to extract precise 

microseismic events in complex environments, especially amidst various interferences 

such as noise and explosions. Due to the significant overlap in frequency distribution 

between blasting signals and microseismic events (Figure 1.2), relying solely on spectral 

analysis makes it challenging to accurately distinguish between these two types of events. 

1.2 Problem Statements 

Microseismic events are small-scale seismic activities that occur in mines due to 

rock fracturing or mining operations. They are essential indicators of the structural 

stability within a mine. Monitoring and accurately identifying these events can help 
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predict and prevent potential hazards, such as mine collapses or rock bursts, ensuring the 

safety of mine workers and equipment. There are various challenges and issues in the 

current identification and classification of microseismic events, including:  

1. Data quality and quantity issues: The current recognition and classification of 

microseismic events face multiple challenges in terms of data quality and quantity, 

including low data quality, imbalanced event quantities, high workload for data 

preprocessing, low efficiency in manual identification, and difficulties in data sharing 

(Dong et al., 2016). 

• Low data quality: Microseismic event data is often affected by noise and 

interference, resulting in lower clarity and accuracy of the signals (Othman et al., 2022). 

This can pose challenges for feature extraction and model training of microseismic 

events. 

• Imbalanced event quantities: The distribution of microseismic events 

among different categories may be imbalanced, with some categories having a larger 

number of events while others have fewer (Li et al., 2021). This can impact the training 

and classification performance of models, leading to lower recognition capabilities for 

minority classes. 

• High workload for data preprocessing: Due to the large-scale nature of 

microseismic event data, significant effort is required for data preprocessing tasks such 

as denoising and data alignment (Zhu et al., 2019). Complex algorithms and 

computational resources are needed, resulting in considerable time and energy 

consumption. 

• Low efficiency in manual identification: Traditional manual identification 

methods rely on domain experts for manual annotation and classification, but these 

methods are inefficient and prone to human errors (Ma et al., 2021). 

• Difficulties in data sharing: The sensitivity and commercial confidentiality 

of microseismic event data make data sharing and communication challenging, affecting 

collaboration among researchers and the transferability of models (Arrowsmith et al., 

2022). 
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2. Challenges in feature extraction: Microseismic events typically exhibit small, 

complex, and variable features, which pose limitations to traditional feature extraction 

methods in capturing effective features. Additionally, due to the diversity of microseismic 

monitoring events (Ge, 2005), different types of events possess distinct features, making 

it challenging to effectively capture and characterize the features of microseismic events 

(Dong et al., 2020). Specifically, the challenges are as follows: 

• Manual selection of feature parameters by experts: Traditional methods 

often rely on domain experts' experience and knowledge to manually select feature 

parameters (Zhang et al., 2021). This approach is time-consuming, susceptible to 

subjective factors, and lacks scalability and generalizability. 

• Selection of source parameter features: The source parameters of 

microseismic events are crucial features (Yu et al., 2022). However, selecting appropriate 

source parameters for feature extraction remains challenging. Different types of 

microseismic events may correspond to different source parameters, necessitating the 

exploration of methods that consider multiple parameters comprehensively. 

• Selection of waveform parameter features: Waveform parameters of 

microseismic events contain rich information. Extracting effective features from complex 

waveform data remains a difficult task. Existing feature extraction methods may not fully 

capture the details and variations in microseismic event waveforms (Kan et al., 2022), 

leading to inaccuracies and missing feature representations. 

• Waveform image recognition and classification: In recent years, image 

processing and machine learning techniques (Yang et al., 2021) have been widely applied 

in the identification and classification of microseismic signals. Transforming 

microseismic waveform data into images and leveraging image recognition and 

classification technologies can provide more comprehensive and accurate feature 

representations. However, further research is needed to explore suitable image 

representation methods and effective training and optimization of image recognition 

models. 

3. Challenges in classification model: Building accurate and reliable classification 

models for microseismic event data is a challenging task due to its complexity. Traditional 

machine learning algorithms may face issues such as high computational complexity and 
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poor generalization ability when dealing with high-dimensional, non-linear, and large-

scale data (Li et al., 2022). In the process of designing classification models, the following 

issues and challenges exist: 

• Accuracy: Ensuring that the classification model accurately categorizes 

microseismic events is a key objective (Wilkins et al., 2020). The model should have high 

accuracy to correctly identify various types of microseismic events, including minority 

classes. 

• Efficiency: In practical applications, the efficiency of the classification 

model is an important consideration (Wamriew et al., 2022). The model should be able 

to classify large-scale microseismic event data quickly and accurately within a reasonable 

time frame. 

• Resource requirements: Designing efficient classification models for 

large-scale microseismic event data requires effective utilization of computational 

resources. The model should consider computational complexity and storage 

requirements while being able to operate effectively on existing hardware infrastructure. 

• Interpretability: Interpretability of the model is also an important 

requirement for the recognition and classification of microseismic events (Basnet et al., 

2024). The model should provide explanations and reasoning for classification decisions, 

enabling users to understand the working principles and results of the model. 

• Generalization and robustness: The classification model should possess 

good generalization ability, exhibiting stable and reliable performance across different 

datasets (Pham et al., 2021). Additionally, the model should demonstrate robustness 

against noise, interference, and data variations to ensure its effectiveness and reliability 

in real-world applications. 

1.3 Research Questions 

Based on a comprehensive review and analysis of relevant literature, our research 

aims to address the following three questions: 

1. How to utilize machine learning methods for automatic microseismic signal 

identification, addressing the issue of high workload and low efficiency in manual 

identification? 
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2. How to improve the recognition efficiency and classification accuracy of existing 

microseismic signal identification and classification models? 

3. How to enhance the generalization and robustness of models in the identification 

and classification of microseismic event waveforms? 

By focusing on these research questions, we aim to advance the automation of 

microseismic signal processing, improve the accuracy of classification algorithms, and 

provide insights and references for the performance of different classification models in 

microseismic signal recognition. 

1.4 Objectives of the Study 

Based on the above research gaps, the objective of this work is to develop a machine 

learning model with high accuracy and timeliness, which can automatically identify and 

classify microseismic signals into different categories of events (such as microseismic 

events, blasts, drilling and noises). In addition, the proposed model is compared and 

evaluated with existing research methods and classical image classification models. 

Specifically, the purpose of this study includes the following three aspects: 

1. To develop a classification model that can automatically identify microseismic 

event waveforms without the need for human intervention, aiming to address the issue of 

traditional machine learning identification methods relying on expert experience and 

manual feature engineering. 

2. To improve and optimize existing classification models and algorithms to further 

enhance the efficiency and accuracy of waveform recognition for different types of 

microseismic events. 

3. To meticulously refine and augment the model's architecture, with a focus on 

bolstering its adaptability and fault tolerance. This endeavor will integrate advanced 

machine learning techniques and rigorous testing methodologies to ensure the model 

maintains exceptional performance across a wide array of microseismic data. 

By achieving these research objectives, this study can provide more reliable and 

effective technical support for the intelligent identification and classification of 

microseismic signals, thus playing an important role in microseismic monitoring and 

mine safety and other related fields. 



 

8 

1.5 Contributions of the Study 

This study has made the following major contributions to the domain of 

microseismic event identification and classification: 

1. Dataset construction and preprocessing: This study is dedicated to building a 

high-quality dataset for monitoring microseismic events in mines. By generating 6-

channel waveforms of microseismic events and leveraging human expertise to label them 

as microseismic, blasting, rock drilling, and noise events, a reliable data foundation is 

provided. This dataset ensures the repeatability and comparability of research on 

microseismic events, offering support for subsequent research work and experiments. 

2. Efficient intelligent recognition model: By constructing an intelligent recognition 

model based on machine learning techniques, this study aims to improve the efficiency 

of microseismic signal classification and reduce the workload of manual judgment. The 

model utilizes advanced algorithms and technologies to rapidly and accurately classify 

microseismic signals, thereby enhancing the level of automation in recognition. Through 

appropriate feature representation methods, adjustment of model parameters, and 

addressing issues such as overfitting and underfitting, we have successfully achieved 

accurate identification and classification of microseismic events. 

3. Model performance evaluation and validation: To evaluate the performance of 

the proposed microseismic event recognition and classification model, this study 

conducted experiments and tests, employing suitable metrics and methods for evaluation. 

By comparing with existing methods, we verified the superiority of the proposed model 

and demonstrated its potential applications in engineering safety, geological exploration 

and resource development, and earthquake activity monitoring and early warning 

(Mousavi et al., 2023). 

4. Practical application promotion: The achievements of this study can be applied 

in various fields, including not only mining engineering safety but also earthquake 

activity monitoring and early warning, geological exploration, and oil and gas resource 

development. By applying the research outcomes to practical scenarios, valuable 

references and support are provided for research and applications in related fields, 

promoting further development and application of intelligent microseismic event 

recognition and classification technologies (Kang et al., 2023). 
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In summary, this study has made significant contributions by improving the 

efficiency of microseismic signal recognition, enhancing the accuracy of recognition 

models, and providing effective data for mine disaster monitoring. These contributions 

advance the field of mine safety monitoring and offer new insights and methodologies for 

related research. 

1.6 Scope of the Study 

The scope of this study is to achieve rapid and accurate identification and 

classification of microseismic signals in mining environments. The research covers the 

fields of computer vision techniques and machine learning algorithms, with data primarily 

sourced from metal mines (Feng et al., 2017).  

Firstly, microseismic signals will be transformed into event waveform images. 

Utilizing computer vision techniques such as image processing, recognition, and 

classification, different datasets of event waveform images will be established. 

Subsequently, machine learning algorithms such as Shallow Machine Learning (SML), 

Convolutional Neural Networks (CNN) (Chen et al., 2019), and Deep Neural Networks 

(DNN) will be employed. These algorithms will be trained using sample databases from 

different mining areas to obtain optimal models, thereby improving the accuracy and 

timeliness of microseismic signal identification and classification. 

To ensure the reliability and effectiveness of the research, a large amount of real 

microseismic signal data will be utilized for testing, and comparisons will be made with 

existing research methods and image classification models. The performance of the 

models will be comprehensively evaluated based on accuracy, identification duration, 

precision, recall, and F1 score, leading to the selection of the best-performing model. The 

ultimate goal is to provide more reliable and intelligent technological support for 

microseismic monitoring and mining safety research (Choi et al., 2024). This will 

facilitate the intelligent transformation and safe development of mining operations. 

1.7 Conceptual Framework 

This study aims to achieve rapid and accurate identification and classification of 

microseismic signals in mining environments by combining computer vision techniques 

and machine learning algorithms. The conceptual framework of this study is illustrated 

below (Figure 1.3): 
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1. Data collection and preprocessing: Firstly, a microseismic monitoring system 

will be deployed in metal mines to collect microseismic signal data, encompassing 

various locations and time periods. The collected data will undergo preprocessing 

operations such as denoising, filtering, and data cleaning to enhance signal quality and 

reduce interference. The preprocessed microseismic signals will be transformed into 

event waveform plots suitable for processing by machine learning algorithms. 

2. Establishment of event waveform databases: Corresponding datasets of event 

waveform images will be constructed for different types of microseismic events. Expert 

engineers will employ manual identification and classification methods to annotate and 

categorize the event waveform plots. This will establish datasets of event waveform 

images for different categories, providing the foundation for subsequent model training 

and recognition. 

3. HOG and Shallow machine learning methods (SML): First, we use the Histogram 

of Oriented Gradients (HOG) algorithm to extract features from microseismic event 

waveform images. These features will serve as inputs for subsequent classifiers. Drawing 

on previous research, we will selecte five commonly used shallow machine learning 

algorithms to build classifiers: SVM classifier, Linear classifier, Decision tree classifier, 

K-Nearest Neighbors (KNN) classifier, and Fisher discriminant classifier. By selecting 

appropriate feature representation methods and optimizing model parameters, automated 

recognition and efficient classification of microseismic events will be achieved. 

4. Convolutional neural network models: CNN models will be introduced, 

leveraging their powerful representation capabilities in image processing, to perform end-

to-end learning and feature extraction on event waveform plots. Through designing 

suitable network architectures, tuning hyperparameters, and employing appropriate loss 

functions, the classification performance of microseismic events will be enhanced. 

5. Deep learning and transfer learning models: To further improve recognition and 

classification performance, deep learning methods such as MobileNet-V2, Inception-V3 

and ResNet-18 will be employed. Additionally, transfer learning techniques will be 

utilized to transfer pre-trained models from other domains to the microseismic event 

recognition and classification task, accelerating model training and improving 

performance. 
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6. Performance evaluation and comparison: The proposed methods and models will 

be tested using extensive real microseismic signal datasets. Performance evaluation will 

be conducted using metrics such as accuracy, precision, recall, and F1 score. Furthermore, 

comparisons with existing research approaches and image classification models will be 

performed to validate the superiority and feasibility of the proposed methods. 

Through this conceptual framework, this study aims to achieve intelligent 

identification and classification of microseismic signals in mining environments. This 

research will provide more reliable and efficient technical support for safety monitoring 

and early warning systems in mining engineering (Sun et al., 2012). Additionally, it will 

contribute to the application and development of computer vision techniques and machine 

learning algorithms in the field of microseismic events. 
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Figure 1.3 Conceptual framework of intelligent identification and classification of 

microseismic events based on machine learning techniques 

1.8 Thesis Outline 

Through the introduction section, readers will gain an understanding of the research 

background and the significance of microseismic event recognition and classification. We 

identify the existing problems and challenges in the research field and state the research 

problems, objectives, and contributions of this study. The following is a detailed outline 

of the relevant content to be presented in this thesis: 
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Chapter 2: Literature Review. This chapter will review the relevant research 

achievements in the domain of microseismic event identification and classification. A 

comprehensive analysis and comparison will be conducted, exploring the application of 

computer vision techniques and machine learning algorithms in microseismic events, 

highlighting the strengths and limitations of existing methods. 

Chapter 3: Data and Methodology. This chapter will provide a detailed description 

of the methods and data used in the research. It will cover data collection, sample 

selection, and data preprocessing methods. Additionally, it will explain the machine 

learning algorithms and models employed, including shallow machine learning methods, 

convolutional neural networks, and deep learning methods such as MobileNet and 

Inception-V3. This chapter aims to ensure accurate and clear descriptions of the data and 

methods. 

Chapter 4: Results. This chapter will introduce the experimental design, including 

dataset selection, feature extraction methods, and model configurations. It will provide a 

detailed description of the training and optimization processes of the models, as well as 

parameter adjustments and model evaluation methods. Experimental results will be 

presented, followed by performance evaluations and comparisons using metrics such as 

accuracy, recall, and F1 score. Detailed analysis and discussions of the experimental 

results will be conducted to explore the strengths and limitations of the methods. 

Chapter 5: Discussion. This chapter will comprehensively analyze and discuss the 

results and findings of the research, summarizing the performance of different methods 

and models in microseismic event recognition and classification. Current challenges and 

issues will be discussed, and future research directions and prospects will be proposed to 

further improve and expand the field of study. 

Chapter 6: Conclusion. This chapter will provide a summary of the main research 

findings and contributions, emphasizing the innovation and practical value of the 

research. Limitations of the study will be acknowledged, and possible avenues for 

improvement will be suggested. 

Through this thesis structure overview, this research will comprehensively 

introduce the relevant work in microseismic event recognition and classification, provide 

detailed explanations of data collection and preprocessing, the application of machine 
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learning models, and analysis of experimental design and results. Additionally, the 

discussion and future directions section will explore current challenges and propose 

future research directions. Finally, the conclusion section will summarize the main 

research findings and discuss their potential practical applications. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Microseismic monitoring technology has been proven to be an effective method for 

predicting underground engineering disasters (Li et al., 2022). Correctly identifying 

microseismic events during underground excavation is the basis for subsequent 

geophysical analysis such as ground pressure warning and tunnel deformation monitoring 

(Ma et al., 2020). Rapid identification of microseismic source types within the monitoring 

area and accurate extraction of valid events are fundamental to the application research 

of microseismic monitoring technology (Zhang et al., 2021). However, due to various 

noise and explosion interferences during mining operations, accurately identifying 

microseismic signals from complex environments and operating conditions still poses 

certain challenges (Shu & Dawod, 2023). 

Traditional identification methods, such as manual waveform analysis (Zhao et al., 

2015), require operators to have strong knowledge of physics and signal processing, and 

pre-determine artificial identification criteria. However, this method is prone to individual 

experience differences and it is difficult to achieve satisfactory results due to the 

variability of collected signals. At the same time, with the increasing amount of 

monitoring data, this method is labor-intensive, time-consuming, and inefficient. 

Therefore, researchers have extensively explored effective methods for accurately 

identifying microseismic signals. 

Based on the principles of different identification methods, we categorize existing 

microseismic signal identification methods into three main classes: (1) spectral analysis 

or frequency spectrum analysis (Li et al., 2012), (2) statistical analysis (Dong et al., 2019), 

and (3) machine learning methods.  
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Spectral analysis (Fagan et al., 2013) refers to the analysis of signals in the 

frequency domain. It transforms time-domain signals into frequency-domain signals to 

display the energy distribution of different frequency components. Common methods 

used in spectral analysis include Fourier Transform (FT) (Ma et al., 2023) and Power 

Spectral Density Estimation. Spectral analysis can be used to determine the presence and 

strength of specific frequency components in a signal and is widely applied in fields such 

as communication, audio processing, and image processing (Wei et al., 2020). On the 

other hand, frequency spectrum analysis focuses more on describing and analyzing the 

frequency characteristics of signals, including the number of frequency components, 

frequency range, and frequency intervals. Frequency spectrum analysis typically involves 

discretizing the signal and then using algorithms such as Discrete Fourier Transform 

(DFT) or Fast Fourier Transform (FFT) (Jiang et al., 2015; Li et al., 2021) to calculate 

the signal's spectrum. Analyzing the energy distribution of the signal in the frequency 

domain helps us understand its characteristics at different frequencies. However, spectral 

and frequency spectrum analysis requires a certain level of expertise, which presents 

challenges in practical engineering applications (Yin et al., 2021). 

In the early 21st century, statistical analysis methods were introduced and 

experienced significant growth (Dong et al., 2016). Statistical analysis methods primarily 

rely on the statistical properties of signals and use manually designed waveform features 

for identification and classification (Chakraborty et al., 2022). By performing statistical 

analysis on microseismic signals, statistical parameters, correlation, and other features 

can be extracted and further used for event identification and classification. However, 

statistical analysis methods still rely on the subjective experience of researchers in feature 

extraction and model selection, which may affect the accuracy of the classification model. 

Additionally, this method is time-consuming and may not produce satisfactory results. 

In recent years, with advancements in hardware and software technology, machine 

learning methods have been widely applied in the field of microseismic signal 

identification (Anikiev et al., 2023). Machine learning-based methods can efficiently and 

accurately identify microseismic events without the need for explicit identification 

instructions. In particular, deep learning-based neural network models (Huang et al., 

2021), by combining the power of machine learning and computer vision (Zhao et al., 

2024), can automatically extract unique features from different waveforms and establish 
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an image classification framework for intelligent recognition of microseismic events. 

This technological approach surpasses traditional statistical methods and improves the 

efficiency of microseismic event identification. As a result, microseismic monitoring 

systems can acquire valuable microseismic data, laying the foundation for subsequent 

earthquake source localization, magnitude prediction, and timely warning of potential 

induced seismic activities (He et al., 2017). 

Figure 2.1 illustrates the relationship among artificial intelligence, machine learning, 

supervised learning (Choi et al., 2019), unsupervised learning (Cano et al., 2021), deep 

learning, and transfer learning (Umeaduma, 2024). Shallow learning, deep learning, and 

transfer learning are subclasses of machine learning, which in turn is a subset of artificial 

intelligence. Supervised learning and unsupervised learning are two distinct approaches 

within machine learning, with supervised learning utilizing labeled data for training, 

while unsupervised learning does not require pre-labeled data. Transfer learning (Bahri 

et al., 2020) involves leveraging knowledge gained from one task to improve performance 

on another related task. 

 

Figure 2.1 Relationship among artificial intelligence, machine learning, supervised  

learning, unsupervised learning, deep learning, and transfer learning 

This chapter will introduce the current research status of machine learning in the 

domain of microseismic signal identification. First, we provide a brief overview of the 

evolution of traditional identification methods and machine learning methods, and briefly 

analyze the advantages and limitations of different methods. Then, based on the 
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characteristics of machine learning methods, we classify and introduce them, and discuss 

the latest research developments in microseismic event identification methods. Lastly, we 

investigate the prospects and obstacles that machine learning encounters in microseismic 

event classification. 

2.2 Theoretical Concepts 

2.2.1 Machine Learning 

Machine learning (Bergen et al., 2019) is a subfield of artificial intelligence that 

focuses on developing algorithms and models to enable computers to learn and make 

predictions or decisions without explicit programming. It utilizes statistical techniques to 

automatically analyze and interpret data, improving performance based on experience. In 

the realm of microseismic signal detection, machine learning models can be trained on 

annotated datasets to identify patterns and features that distinguish various types of events. 

These algorithms can then be used to classify new, unlabeled microseismic signals into 

different event categories. 

Supervised learning (Zhao et al., 2017) is a commonly used branch of machine 

learning for microseismic signal recognition. In supervised learning, algorithms are 

provided with a training dataset that includes input features (such as waveform features 

and statistical parameters) and corresponding output labels (such as event types). The 

algorithm learns from these labeled data and builds a model capable of predicting the 

correct labels for new, unseen inputs. Common supervised learning algorithms include 

SVM (Cervantes et al., 2020), decision tree (Zhao et al., 2021), random forests, and neural 

networks. These algorithms can handle complex relationships between input features and 

output labels, capturing intricate patterns in the data. 

In addition to supervised learning, there is also research based on unsupervised 

learning methods. Unsupervised learning (Yang et al., 2023) is another important branch 

of machine learning that does not require pre-labeled training datasets. Instead, it learns 

and infers by discovering intrinsic structures, patterns, and associations within the data. 

In the field of microseismic signal recognition, unsupervised learning can be applied to 

tasks such as clustering analysis (Duan et al., 2021), anomaly detection, and 

dimensionality reduction. 
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Clustering analysis (Fagan et al., 2013) is a commonly used technique in 

unsupervised learning, which groups data into clusters with similar features. In 

microseismic signal recognition, clustering analysis can help identify microseismic 

events with similar waveform characteristics, enabling automatic classification of event 

types. Common clustering algorithms (Feng et al., 2023) include k-means clustering, 

hierarchical clustering, and density-based spatial clustering of applications with noise 

(DBSCAN) (Yin et al., 2023). 

Anomaly detection (Li et al., 2009) aims to identify anomalies or outliers that do 

not conform to normal patterns. In microseismic monitoring, anomaly detection can be 

used to identify abnormal microseismic events that may represent potential geological 

changes or activities, providing deeper analysis and warning of underground conditions 

(Wang et al., 2021). Common anomaly detection algorithms include statistical-based 

outlier detection, density-based outlier detection, and isolation forest-based outlier 

detection. 

Additionally, dimensionality reduction techniques (Mousavi et al., 2022) are also 

utilized in unsupervised learning. Dimensionality reduction maps high-dimensional data 

to a lower-dimensional space to reduce complexity and redundancy in the data. In 

microseismic signal analysis, dimensionality reduction techniques can help extract the 

most informative features and reduce computational complexity. Common 

dimensionality reduction algorithms include Principal Component Analysis (PCA) (Zhu 

et al., 2023) and Linear Discriminant Analysis (LDA) (Dong et al., 2011). 

The advantage of unsupervised learning (Chen, 2018) methods is that they do not 

require pre-labeled data and can automatically discover patterns and structures within the 

data. However, due to the lack of supervision, unsupervised learning methods may be 

more challenging to interpret and validate, requiring further research and exploration in 

their application to microseismic signal recognition. 

Another important concept in machine learning is feature extraction. Feature 

extraction involves selecting or transforming raw data into a meaningful and informative 

set of features that can serve as input for machine learning algorithms. In the context of 

microseismic signal recognition, these features may include time-domain characteristics, 
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frequency-domain properties, statistical indicators, or other relevant parameters used to 

capture unique features of different event types. 

Machine learning methods offer the advantages of automatic learning and 

adaptability to new data, enabling them to handle the variability and complexity of 

microseismic signals. They can also efficiently process large amounts of data, which is 

particularly important as microseismic monitoring data continues to grow. However, 

machine learning also has limitations. It requires sufficiently large and representative 

labeled datasets for training, as the quality and diversity of the training data greatly impact 

the performance of the models. Overfitting is another challenge in machine learning, 

occurring when the model becomes overly focused on the training data and performs 

poorly on new data. Regularization techniques and careful model selection can help 

mitigate overfitting issues.  

The evolution of machine learning in microseismic signal identification can be 

broadly categorized into three stages: shallow learning, deep learning, and transfer 

learning. Figure 2.2 shows the distinctions among these three stages. 

In summary, machine learning provides a powerful framework for microseismic 

signal recognition by utilizing statistical techniques and the ability to learn automatically 

from data. It enables the development of models that accurately classify and interpret 

microseismic signals, driving advancements in microseismic monitoring technology. 
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Figure 2.2 Three stages of machine learning development 

2.2.2 Shallow Learning 

Shallow learning (Wang et al., 2020), also known as traditional machine learning, 

is another commonly used approach in microseismic signal recognition. Unlike deep 

learning (Alarfaj et al., 2022) methods that involve complex neural network structures 

and large amounts of labeled data, shallow learning algorithms are simpler and have lower 

computational requirements. Shallow machine learning methods rely on feature 

engineering, which involves extracting manually designed features from input data and 

using them to train classification models. 

In microseismic signal recognition, shallow learning algorithms can be applied to 

various types of features extracted from waveform data. These features can include 

statistical measures such as mean, variance, skewness, and kurtosis, as well as time-

domain features like energy, zero-crossing rate, and peak amplitude. Additionally, 

frequency-domain features like spectral centroid, spectral entropy, and spectral flatness 

can also be used. Other commonly used features in microseismic signal recognition 

include wavelet coefficients, autoregressive coefficients, and cepstral coefficients (Peng 

et al., 2019). 
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After extracting these features from the waveform data, they are used as inputs to 

shallow learning algorithms such as SVM (Chandra et al., 2021), Random Forests, or k-

Nearest Neighbors. These algorithms learn patterns and decision boundaries based on the 

extracted features and are trained using labeled data. Once trained, the models can classify 

new microseismic signals into different classes or detect specific events of interest. 

Shallow learning approaches have several advantages in microseismic signal 

recognition. They are computationally efficient and can handle large-scale datasets, 

making them suitable for real-time or near-real-time applications. Shallow learning 

methods also require less labeled data compared to deep learning methods, which can be 

beneficial when labeled data is limited or expensive to obtain. Additionally, shallow 

learning algorithms provide interpretable results, allowing domain experts to understand 

and analyze the underlying features contributing to the classification or detection. 

However, there are limitations to shallow learning approaches. These methods 

heavily rely on the quality and relevance of handcrafted features, which require domain 

knowledge and expertise to select and design appropriately. The performance of shallow 

learning algorithms highly depends on the choice and effectiveness of these features. 

Moreover, shallow learning methods may face difficulties in capturing the intricate 

patterns or relationships present in the data, which deep learning models are particularly 

adept at handling (Huang et al., 2018). 

To overcome these limitations, a hybrid approach combining shallow learning and 

deep learning techniques can be employed (Mousavi et al., 2016). This involves using 

deep learning models for feature extraction and representation learning, followed by 

shallow learning algorithms for classification or detection based on the extracted features. 

This hybrid approach takes advantage of both the representational power of deep learning 

and the interpretability and efficiency of shallow learning. 

In summary, shallow learning methods offer a simpler and computationally 

efficient alternative to deep learning for microseismic signal recognition. By extracting 

manually designed features from waveform data and training traditional machine learning 

models, automatic classification and event detection can be achieved. However, careful 

feature engineering and selection are crucial for the performance of shallow learning 

algorithms. Combining shallow learning with deep learning methodologies can 
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significantly improve the accuracy and efficiency of microseismic signal identification 

systems. 

2.2.3 Deep Learning 

Deep learning (Yang et al., 2015) is an important branch of machine learning that 

utilizes multi-layer neural networks to model and learn data representations. By stacking 

multiple hidden layers, deep learning can automatically extract and learn more abstract 

and complex features. In the domain of microseismic signal classification, deep learning 

methods have been widely applied and achieved significant results (Zhang et al., 2022). 

Deep learning models can effectively handle large-scale, high-dimensional microseismic 

data and directly learn task-specific feature representations from raw data. This end-to-

end learning approach eliminates the need for manual feature design, allowing the models 

to better adapt to different types of microseismic events (Yang et al., 2015). 

Common deep learning models include convolutional neural networks (Li et al., 

2022), recurrent neural networks (RNN) (Di et al., 2023), and Autoencoders (Mousavi et 

al., 2019). CNNs (Alzubaidi et al., 2021) perform well in processing time-domain or 

frequency-domain microseismic waveform data, effectively capturing local features and 

spatial correlations. RNNs are suitable for handling time series data (Ding et al., 2022), 

and capturing temporal relationships in microseismic signals. Autoencoders are 

unsupervised learning models that can be used for unsupervised feature learning and data 

dimensionality reduction (Huang, 2019). 

The advantages of deep learning methods in microseismic signal recognition 

include their ability to model complex features, automate feature extraction, and 

robustness against noise and interference. They can learn more discriminative feature 

representations from large amounts of data and handle nonlinear relationships and 

complex spatiotemporal structures in the signals. However, deep learning also faces 

challenges and limitations. Firstly, deep learning models usually require a large amount 

of labeled data for training, which may be limited in the microseismic field due to data 

scarcity. Secondly, deep learning models have high computational complexity, requiring 

significant computational resources and time for training and inference. Additionally, the 

interpretability of these models is limited, which complicates understanding and 

explaining their internal decision-making processes (Schmidhuber, 2015). 
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To overcome these challenges, researchers are constantly improving deep learning 

models and algorithms to enhance their performance and efficiency (Z. Xie et al., 2022). 

For example, transfer learning and semi-supervised learning techniques can utilize pre-

trained models or a small amount of labeled data to improve the generalization ability of 

the models. Additionally, research on model interpretation and explainability is an 

important direction aimed at enhancing understanding and interpretability of the decision-

making processes within deep learning models. 

In summary, deep learning, as an important branch of machine learning, exhibits 

powerful capabilities in microseismic signal recognition. By constructing deep structures 

and employing end-to-end learning, deep learning models can effectively extract and 

learn feature representations of microseismic signals, enabling accurate event 

classification and recognition. However, further research and development are still 

needed to overcome challenges such as data scarcity, computational complexity, and 

model interpretability. 

2.2.4 Transfer Learning 

Transfer learning (Zhu et al., 2022) is also a machine learning method that aims to 

accelerate the learning process and improve performance in a new task by applying the 

knowledge and experience learned from another related task (Setiawan et al., 2020). In 

the field of microseismic signal recognition, transfer learning is widely used to address 

the challenges of data scarcity and labeling difficulties (Deepak et al., 2019). 

Conventional algorithms within the realm of machine learning often necessitate extensive 

datasets with labeled information for model training, and each new task requires training 

a separate model from scratch. However, in practical microseismic monitoring 

applications, it is often difficult to obtain a sufficient amount of labeled data, which limits 

the performance and applicability of models. Transfer learning overcomes this data 

limitation by leveraging existing large-scale, high-quality labeled datasets and 

transferring the knowledge and features learned from other related tasks to the 

microseismic signal recognition task (Pan et al., 2010). 

Transfer learning can be applied in two ways: feature transfer and model transfer. 

Feature transfer involves directly applying the learned feature representations from the 

source domain to the target domain without retraining the feature extractor. This approach 



 

25 

is suitable when the source and target domains have similar feature representations. 

Model transfer, on the other hand, involves using a pre-trained model from the source 

domain as an initial model and fine-tuning or further training it on the target domain. This 

approach is applicable when there are differences between the source and target domains 

but still have some relevance (Dong et al., 2023). 

The core idea of transfer learning is to enhance the learning effectiveness and 

generalization ability of the target task by sharing knowledge and feature representations. 

It reduces the dependency on a large amount of labeled data and leverages existing 

experience to accelerate the learning process of new tasks. Additionally, transfer learning 

can help address the challenge of labeling difficulties by assisting in labeling more 

challenging samples based on the knowledge learned from existing labeled data. 

However, transfer learning also faces challenges and limitations. Firstly, the differences 

between the source and target domains may lead to a decrease in the performance of 

transfer learning. Therefore, selecting appropriate source domains and designing effective 

transfer strategies are crucial. Secondly, transfer learning requires a sufficient quantity 

and quality of source domain data to learn good feature representations and knowledge. 

Lastly, the effectiveness of transfer learning is influenced by the correlation and similarity 

between the source and target domains, and different application scenarios may require 

different transfer methods and strategies. 

In conclusion, transfer learning is a powerful machine learning method with broad 

applications in the field of microseismic signal recognition. By leveraging existing 

knowledge and experience, transfer learning can overcome the challenges of data scarcity 

and labeling difficulties, improving the performance and applicability of microseismic 

signal recognition. However, further research and exploration are still needed to address 

the challenges related to differences between source and target domains, selection of 

transfer strategies, and requirements for source domain data. 

2.2.5 Image Recognition and Classification 

Image recognition and classification is an important research direction in the fields 

of machine learning and computer vision (Chugh et al., 2020; Huang et al., 2021), and it 

has been widely applied in microseismic signal recognition. Its goal is to automatically 



 

26 

analyze and interpret input image data, categorizing them into different classes or 

performing object detection (Khayer et al., 2023). 

In microseismic signal recognition, image recognition and classification methods 

can be used to process the visual representations of microseismic waveform data, such as 

time-domain graphs, spectrograms, or time-frequency spectrograms (Li et al., 2022; Wei 

et al., 2020). These image representations provide more intuitive, interpretable, and easily 

processable features that help capture spatial and frequency information of microseismic 

events. By training image recognition and classification models, automatic classification 

and recognition of microseismic signals can be achieved. The explanations of different 

visualization methods for microseismic waveform data are as follows: 

1. Time-domain graphs: Microseismic waveforms are plotted over the time 

axis, where the horizontal axis represents time and the vertical axis represents the 

amplitude of the signal (Zhang et al., 2021). This visualization method intuitively displays 

the amplitude and duration of microseismic events. 

2. Spectrograms: By applying the Fourier transform to microseismic 

waveform signals, the signals are transformed into the frequency domain, and the spectral 

information is presented as a heatmap or color map. Spectrograms show the energy 

distribution of microseismic signals at different frequencies, helping to capture the 

frequency characteristics of microseismic events. 

3. Time-frequency spectrograms: Microseismic waveform signals are 

decomposed into small segments in different time periods and frequency ranges, and 

plotted as two-dimensional images. Common time-frequency analysis methods include 

Short-Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT), and 

Wavelet Packet Transform (WPT). Time-frequency spectrograms provide local features 

of microseismic events in both time and frequency domains, aiding in capturing their 

time-frequency characteristics (Bi et al., 2021). 

4. Wavelet packet spectrograms: Microseismic waveform signals are 

decomposed into sub-signals of different scales and frequency bands using wavelet 

packet transform, and plotted as two-dimensional images. Wavelet packet spectrograms 

display the energy distribution of microseismic events at different scales and frequency 

bands, helping to capture multi-scale features of microseismic events. 
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5. Phase diagrams: Phase information of microseismic waveform signals is 

displayed. Phase diagrams can help identify phase differences between microseismic 

events, inferring their spatial distribution and propagation paths. 

Among these visualization methods, time-domain graphs and spectrograms are the 

most widely used in the analysis and recognition of microseismic waveform data. 

Common image recognition and classification methods include Convolutional Neural 

Networks, feature extraction, and image matching. CNNs are deep learning models 

suitable for image data, capable of automatically extracting feature representations from 

images and performing classification or object detection (Zhao et al., 2019). Feature 

extraction is a traditional method that selects and extracts local features of images, such 

as texture, shape, and edges, for classification. Image matching involves calculating the 

similarity or distance between images for classification or recognition. 

Image recognition and classification methods offer several advantages in 

microseismic signal recognition. Firstly, image representations provide more intuitive 

and interpretable features, making the models more sensitive to spatial and frequency 

information of microseismic events. Secondly, image recognition and classification 

methods are efficient and flexible when handling large-scale image data, capable of 

dealing with complex spatiotemporal structures and nonlinear relationships (Wang et al., 

2024). Additionally, image recognition and classification methods can be combined with 

other machine learning methods, such as deep learning and transfer learning, to further 

enhance the performance of microseismic signal recognition. 

However, image recognition and classification methods also face challenges and 

limitations. Firstly, the image representation of microseismic waveform data requires 

appropriate preprocessing methods and parameter settings to retain important feature 

information and reduce the impact of noise. Secondly, the process of model training and 

fine-tuning parameters often necessitates an extensive collection of annotated data along 

with considerable computational power. In the domain of microseismic analysis, these 

requirements can be challenging due to the constraints posed by limited data availability 

and the intricate computational demands. Lastly, different types of microseismic events 

may have different image representation methods and features, requiring appropriate 

model design and training strategies for specific problems. 
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In summary, image recognition and classification methods provide an effective 

solution for microseismic signal recognition. By selecting suitable image representation 

methods and models, automatic classification and recognition of microseismic waveform 

data can be achieved. However, further research and exploration are still needed to 

overcome challenges related to data preprocessing, labeling data requirements, and model 

design, promoting the further development of image recognition and classification in 

microseismic monitoring technology. 

2.3 Literature Review and Related Research 

In this study, relevant literature was obtained from reputable academic databases 

such as Google Scholar, Web of Science, Scopus, and PubMed. Initially, a predefined set 

of keywords including "microseismic event," "microseismic waveform," "machine 

learning," "deep learning," "image recognition," and "image classification" was used to 

index the research information. An extensive search on Google Scholar was conducted, 

and studies were selected based on their significance in the field. 

A thorough review of current literature is essential for comprehending the 

techniques used in microseismic event waveform recognition and classification. By 

examining current research, valuable insights can be drawn from previous studies to guide 

future research. Table 2.1 summarizes the research objectives, methodologies, and 

significant findings (or limitations) of various methods employed in this field over the 

past six years, arranged in chronological order. It serves as a comprehensive reference for 

researchers, covering statistics, spectral analysis, traditional machine learning, deep 

learning (Ku et al., 2021), and transfer learning methods. The table illustrates the variety 

of methodologies employed in microseismic event identification, ranging from traditional 

methods like EEMD and SSA to decision trees, support vector machines (Cortes et al., 

1995), and convolutional neural networks. Such a variety of approaches equips 

researchers with an extensive array of options, enabling them to pick the most fitting 

instruments tailored to their precise demands. 
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Table 2.1 Relevant studies in recent years (2018 - 2023). 

Scholars Objectives Methods Key Findings/Gaps 

Lin et 

al., 2018 

Joint recognition and 

classification of 

multi-channel 

microseismic 

waveforms 

Deep 

convolutional 

neural network 

with spatial 

pyramid pooling 

(DCNN-SPP) 

The classification accuracy of the 

test set was 91.13%, but further 

improvement is possible with more 

training data. 

Binder et 

al., 2019 

Detect microseismic 

events in a distributed 

acoustic sensing 

(DAS) strain 

wavefield 

Convolutional 

neural networks 

(CNNs)  

Neural networks offer cost-effective 

and automated detection of 

microseismic events. 

Bi et al., 

2019 

Identify and classify 

multi-channel 

microseismic 

waveforms 

A hybrid 

technique of 

DCNN and 

support vector 

machine (SVM)  

DCNN-SVM method outperformed 

random forests (RF) and k-nearest 

neighbors (KNN), with an accuracy 

rate of 98.18%.  

Zhang et 

al., 2019 

Automatic 

identification of 

microseismic data 

Combining 

ensemble 

empirical mode 

decomposition 

(EEMD), singular 

value 

decomposition 

(SVD), and 

extreme learning 

machine (ELM)  

ELM outperformed backpropagation 

neural networks, neural networks 

optimized with genetic algorithms, 

and SVM classification models.  

Dong et 

al., 2020 

Identification of 

microseismic events 

and explosions in 

seismic waveforms. 

A CNN-based 

image recognition 

model 

CNN demonstrated significant 

advantages, achieving accuracy rates 

of 99.46% for microseismic events 

and 99.33% for explosions in the 

test dataset. 

Kang et 

al., 2020 

Classification of 

microseismic events 

and explosions 

Deep belief 

network (DBN) 

The model outperformed the 

accuracy obtained with SVM and 

Fisher classifiers, achieving 94.4%.  

Peng et 

al., 2020 

Classification of 

limited sample 

microseismic records 

Capsule network 

(CapsNet) 

On a limited set of training 

examples, the method achieved a 

99.2% accuracy rate. It 

outperformed CNN and other 

machine learning algorithms in 

terms of effectiveness. 

Song et 

al., 2020 

Identification of 

mining microseismic 

and blast signals 

CNN and 

Stockwell 

transform-based 

color images  

Utilized the strengths of CNN in 

image recognition by directly 

training on raw microseismic signal 

images, thus eliminating the need for 

extensive data preprocessing. 
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Table 2.1 Relevant studies in recent years (2018 - 2023) (continued) 

Scholars Objectives Methods Key Findings/Gaps 

Wei et 

al., 2020 

Identification of 

microseismic events 

and explosions  

A waveform 

image 

discrimination 

method using 

principal 

component 

analysis (PCA) 

and SVM 

Combining waveform image 

features extracted by PCA with the 

SVM classifier accurately identifies 

microseismic events, achieving a 

peak accuracy of 90%. 

Yi et al., 

2020 

Identification of 

mining microseismic 

and blast signals 

Complete 

ensemble 

empirical mode 

decomposition 

with adaptive 

noise sample 

entropy 

(CEEMDAN_SE) 

Distinct differences in sample 

entropy values are observed between 

microseismic and blast signals. By 

integrating these values with ELM, 

the CEEMDAN_SE method 

achieves a classification accuracy of 

91.5%. 

Peng et 

al., 2021 

Identification of 

microseismic events 

and explosions  

Ten machine 

learning methods 

based on six 

source factors. 

The logistic regression algorithm 

performs the best with an accuracy 

of over 95%. The quality of training 

samples directly affects the model's 

classification accuracy. 

Bi et al., 

2021 

Microseismic 

waveform 

categorization 

An 

understandable 

time-frequency 

convolutional 

neural network 

(XTF-CNN)  

Compared with CNN, LSTM, RNN-

FCN, and ResNET, XTF-CNN 

obtains excellent performance and 

outstanding interpretability.  

Jiang et 

al., 2021 

Identification of 

mining microseismic 

and blast signals 

An improved 

Hilbert-Huang 

transform is 

adopted to reveal 

the time-

frequency 

spectrum (HHS) 

This approach minimized the 

operator's influence on 

classification, enhancing both the 

accuracy and efficiency of mass 

spectrometry signal data 

identification in spectral monitoring 

technology applications. 

Peng et 

al., 2021 

Identify effective 

microseismic signals 

Deep 

convolutional 

neural network 

Inception 

(DCNN-

Inception)  

DCNN-Inception algorithm 

outperformed CNN in recognition 

accuracy.  

Rao et 

al., 2021 

Discriminating 

microseismic events 

and mine blasts 

Particle swarm 

optimization 

(PSO) algorithm 

optimized ELM 

artificial 

intelligence 

model (PSO-

ELM) 

Compared to the original ELM 

model and other models (BPNN, 

NBC, and FDA), PSO-ELM showed 

the best discrimination performance.  
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Table 2.1 Relevant studies in recent years (2018 - 2023) (continued) 

Scholars Objectives Methods Key Findings/Gaps 

Tang et 

al., 2021 

Identification 

microseismic events 

CNN combined 

with an attention 

mechanism 

The model refines CNN's 

intermediate data to increase 

efficiency without a significant rise 

in parameters or computational load. 

Applied to multiple channels, it 

achieves the best results. 

Zhao et 

al., 2021 

Identification of 

microseismic signals 

(three types: 

microseismic, blast, 

and mechanical)  

A hybrid model 

combining 

singular spectrum 

analysis (SSA), 

CNN, and long 

short-term 

memory network 

(LSTM) 

Compared with CNN, LSTM, BP, 

SVM, decision tree (DT), KNN, and 

linear discriminant analysis (LDA), 

this model achieved higher 

recognition accuracy.  

Ding et 

al., 2022 

Mine microseismic 

event recognition 

Neural network 

combined with 

transfer learning 

The enhanced T-SimCNN model, 

utilizing transfer learning, attained a 

95% accuracy rate in identifying 

microseismic occurrences. 

Fan et 

al., 2022 

Discriminating 

microseismic events 

from noise. 

Wavelet 

scattering 

decomposition 

(WSD) transform 

and SVM  

Each signal's scattering coefficients 

demonstrated their aptness for 

serving as distinctive features in the 

training of specialized models. 

Jia et al., 

2022 

Classification of 

three-channel seismic 

full-waveform time 

series and spectral 

data (three classes: 

earthquakes, blasting, 

and mine collapses)  

VGGnet, ResNet, 

and Inception 

The findings indicated that the 

classifier's performance metrics, 

both in terms of recall and precision, 

surpassed the 90% threshold. 

Li et al., 

2022 

Recognition and 

classification of 

microseismic 

waveform images and 

spectrograms  

Deep learning 

models, including 

VGG16, 

ResNet18, 

AlexNet and their 

ensemble models. 

The individual models exhibited 

strong performance on the raw 

waveform image dataset, achieving 

96% accuracy for AlexNet, 98% for 

VGG16, 96% for ResNet18, and an 

ensemble model reaching 98% 

accuracy. 

Wang et 

al., 2022 

Microseismic 

waveform 

classification 

Enhanced 

convolutional 

natural network 

(ECNN) based on 

the ACGAN 

structure 

The research examined the impact of 

varying training sample sizes on 

both ECNN and conventional 

CNNs. It revealed that classification 

accuracy for both types of models 

stabilizes at a count above 1024 

samples and experiences a sharp 

decline when the sample size is 

reduced below 512. 
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Table 2.1 Relevant studies in recent years (2018 - 2023) (continued) 

Scholars Objectives Methods Key Findings/Gaps 

Wang et 

al., 2022 

Identifying 

microseismic events  

A dual-channel 

CNN modelwith 

time-domain 

information and 

wavelet packets 

decomposition 

coefficients (T-

WPD CNN).  

The wavelet packet decomposition 

technique accentuates the intrinsic 

properties of signals and effectively 

diminishes the impact of noise. 

Experimental data suggests that the 

T-WPD CNN model outperforms 

standard CNN in reliability and 

robustness against noise 

interference. 

Zhu et 

al., 2022 

Discriminating 

earthquakes and 

quarry blasts. 

Proposed an 

application 

strategy that 

combines deep 

learning and 

transfer learning 

Deep learning enables accurate 

identification of seismic events 

using raw waveforms, and the 

utilization of transfer learning allows 

for effective generalization of deep 

learning models across various 

locations. 

Chen et 

al., 2022 

Microseismic signal 

detection. 

Conv-LSTM-

Unet is a deep 

learning model 

which utilizes 

convolutional 

neural networks 

and long short-

term memory 

networks 

The Conv-LSTM-Unet model 

utilizes a semantic segmentation 

approach to more effectively capture 

the spatiotemporal features of 

microseismic data.  

Li et al., 

2023 

Microseismic 

waveform 

recognition  

A modified 

LeNet5 CNN 

The revised model recognized 13 

forms of MS from real data with a 

maximum accuracy of 98%, an 

increase of 10% over the original 

model.  

Ma et 

al., 2023 

Recognition and 

classification of 

microseismic signals  

Deep learning 

techniques and 

short-time 

Fourier transform 

(STFT) 

technologies 

STFT time-frequency analysis 

reveals unique characteristics of 

noise, microseismic, and blasting 

signals, enabling precise temporal 

differentiation from noise signals 

that closely resemble microseismic 

events.  

Dong et 

al., 2023  

Recognition and 

classification of 

microseismic event 

waveforms 

CNN-based 

transfer learning 

models (AlexNet, 

GoogLeNet, and 

ResNet50) 

Four categories of microseismic 

event datasets were created, and 

transfer learning was applied to pre-

trained models. GoogLeNet 

demonstrated the highest overall 

performance, achieving a 

recognition accuracy of 99.8%. 
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2.3.1 Traditional Identification Methods 

In the field of microseismic signal recognition, several traditional recognition 

methods have been proposed and applied in practical engineering. These traditional 

recognition methods primarily include manual identification, correlation analysis, and 

spectral analysis. 

• Manual Identification: 

Manual identification is one of the earliest and most commonly used methods 

for microseismic signal recognition (Peng et al., 2021). This method relies on experts in 

the field who observe and analyze waveform data to determine the occurrence of 

microseismic events (Dong et al., 2020). Manual identification methods require 

experienced professionals and are time-consuming and labor-intensive, but they can still 

be effective in certain cases. However, due to subjectivity and individual differences, 

manual identification methods suffer from issues such as inconsistent recognition results 

and uncertainty in labeling data (Jiang et al., 2023). 

• Correlation Analysis: 

Correlation analysis is another commonly used traditional recognition 

method, which determines whether different microseismic signals have similar features 

or shared structures by calculating their correlations (Shang et al., 2017). Correlation 

analysis methods can be applied to time-domain or frequency-domain data and utilize 

cross-correlation or autocorrelation functions for computation (Caffagni et al., 2016; Wu 

et al., 2016). These methods help capture the similarity or correlation between signals for 

recognition and classification. However, correlation analysis methods are sensitive to 

signal noise and may have high computational complexity when dealing with large-scale 

data. 

• Spectral Analysis: 

Spectral analysis is a common traditional recognition method that utilizes the 

frequency-domain characteristics of signals for classification or identification (Li et al., 

2021). Spectral analysis methods calculate the spectral information of signals using 

Fourier transform or other spectral estimation techniques and extract frequency features 

for recognition (Fagan et al., 2013). Common spectral features include spectral energy, 
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dominant frequency components, and spectral shape (Li et al., 2018). Spectral analysis 

methods effectively capture the frequency characteristics of signals but may not be as 

sensitive to time-domain and time-frequency domain features. 

In addition to traditional identification methods, numerous research works have 

been dedicated to improving the recognition performance of microseismic signals. Some 

of these studies focus on enhancing feature engineering techniques to extract more 

discriminative features (Mousavi et al., 2016). For instance, methods like wavelet 

transform, singular value decomposition, and adaptive filtering have been employed to 

extract features from microseismic signals and utilize them for classification using 

classifiers (Shu et al., 2022). Other studies concentrate on improving machine learning 

algorithms such as support vector machines (Foody et al., 2004), random forests, and 

deep learning (Y. Fu et al., 2020) to enhance the accuracy and robustness of microseismic 

signal classification (Shu et al., 2023). 

Overall, while traditional methods like manual identification, correlation analysis, 

and spectral analysis have laid the foundation for microseismic signal recognition, 

advancements in feature extraction techniques and machine learning algorithms are 

continuously improving the precision and reliability of these recognition systems. 

2.3.2 Statistical Methods 

During the late 20th and early 21st centuries, various statistical methods were 

employed to construct classification models for microseismic events (Cao et al., 2009). 

These methods include regression analysis (Vallejos et al., 2013), discriminant analysis 

(Dong et al., 2016), principal component analysis (PCA) (Shang et al., 2017), and support 

vector machines (SVM) (Bi et al., 2019; Ding et al., 2019). As microcrack energy is 

released in the form of seismic waves in rocks and blasting is an artificially induced active 

seismic source (Holtzman et al., 2018), these two types of signals possess distinct source 

parameters. However, despite this distinction, parameter extraction and model selection 

still heavily rely on researchers' subjective experience, which can affect the accuracy of 

classification models. Moreover, disregarding the correlation between parameters may 

result in inadequate classification. Therefore, before constructing a classification model, 

each parameter must be thoroughly analyzed, considering its correlation with other 
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variables and its applicability in specific models. This process inevitably increases 

computational time. 

When constructing classifier models, a common approach is to extract key 

parameters from raw waveforms or seismic sources to create event classifiers that can 

differentiate between different events in microseismic data. These parameters include 

waveform features across the time and amplitude domains. Key parameters, such as time 

and frequency variation parameters (Sugondo et al., 2021), spectral ratios, maximum 

frequency, P-wave and S-wave (Li et al., 2023) amplitude ratios, signal duration, first 

peak amplitude, and maximum peak arrival time, can be obtained through waveform 

correlation analysis. Additionally, some feature parameters can be extracted from seismic 

sources, such as seismic moment, seismic energy, event occurrence time, stress drop, 

sensor trigger counts, and corner frequency. These feature parameters aid in 

distinguishing different types of microseismic events and provide crucial input 

information for classifier models (Dong et al., 2016). 

This research (Orlic et al., 2010) employed a specially designed genetic algorithm 

to autonomously search for an approximately optimal set of seismic waveform features 

and applied this method to classify natural earthquakes and anthropogenic events (blast 

events). The method was validated on a collection of seismic waveforms consisting of 60 

local earthquake waveforms and 60 blast waveforms, achieving an accuracy rate of 85%.  

2.3.3 Machine Learning Classification Methods 

In addition to traditional recognition methods, machine learning classification 

methods have also been widely applied to the identification and classification of 

microseismic signals. Machine learning utilizes a data-driven approach to automatically 

learn and recognize different types of microseismic signals through training models. 

Remarkable advancements and implementations have been observed in specific domains 

such as image recognition, speech recognition, signal processing, and computer vision 

(Wei et al., 2020). Commonly used machine learning classification methods include SVM, 

Random Forests, k-Nearest Neighbors (KNN), decision trees, artificial neural networks 

(Zhang et al., 2023), CNN, and DNN (Wamriew et al., 2021). In the context of 

microseismic signal recognition and classification, machine learning can be categorized 
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into two main branches: supervised learning (Feng et al., 2022; Qu et al., 2020) and 

unsupervised learning (Johnson et al., 2020; R. Liu, 2021). 

Next, we will delineate the evolutionary trajectory of machine learning applications 

within the sphere of microseismic event detection and categorization: 

1. Shallow Machine Learning Methods 

Early research primarily employed shallow machine learning methods such 

as SVM, random forests, KNN, and decision trees. These methods extract features from 

microseismic signals and construct classifier models to achieve the identification and 

classification of microseismic events. 

For instance, This research (Vallejos et al., 2013) used logistic regression and 

neural networks for the classification of seismic records, achieving accuracies exceeding 

95% at their respective optimal decision thresholds. Zhao et al. (2015) conducted research 

to identify discriminative features for classifying mine seismic events in seismic graphs. 

They established a signal database based on manually identified blast and microseismic 

event signals. Addressing the challenge of inaccurate picking of P-wave arrivals (Chen et 

al., 2022; Chen, 2020; Guo et al., 2021), they proposed using the slope value of the 

starting trend line obtained through linear regression as a substitute for the angle. Two 

slope values associated with the coordinates of the first peak and the maximum peak were 

extracted as characteristic parameters. A statistical model, utilizing Fisher discriminant 

analysis, was established with an accuracy exceeding 97.1%. 

This research (Dong et al., 2016) utilized random forests, support vector 

machines, and naive Bayes classifiers for the classification of microseismic events and 

blasts. The research findings showed that the random forest model not only achieved 

higher accuracy in automatic classification but also ranked discriminators based on 

computed weight values. This study (Jiang et al., 2020) introduces a novel approach that 

combines the improved complete ensemble empirical mode decomposition with adaptive 

noise (I-CEEMDAN), singular value decomposition (SVD), and the k-nearest neighbors 

algorithm for microseismic signal classification. The I-CEEMDAN and SVD techniques 

are employed to automatically extract relevant features, while the KNN algorithm is 

utilized for automated classification of microseismic and blasting signals. 
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2. Deep Learning Methods 

Deep learning has become a potent instrument for image recognition of 

microseismic event waveforms (Wang et al., 2021). The procedural diagram of image 

recognition, including conventional machine learning strategies and advanced deep 

learning algorithms is depicted in Figure 2.3. Specifically, convolutional neural networks 

are utilized as the deep learning model, incorporating multiple stacked convolutional 

layers and pooling layers to extract local and global features from waveform data. These 

features encompass vital information, including waveform shape, frequency, and 

temporal characteristics. The subsequently extracted features are then input into fully 

connected layers for the recognition and classification of microseismic events. 

Characteristics of shallow machine learning methods include (1) the necessity 

for manual feature engineering, entailing the selection and design of pertinent features for 

the specific problem; (2) lower data requirements, making them susceptible to overfitting 

when working with smaller datasets; (3) quicker computation speed and relatively 

straightforward training processes; (4) challenges in capturing intricate nonlinear 

relationships when faced with limited feature expression capabilities. 

 

 
(a) Traditional machine learning method 

 

 
(b) Deep learning method 

Figure 2.3 Image detection and classification using various machine learning models. 
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In comparison, deep learning methods present notable advantages in the 

realm of microseismic event image recognition. Primarily, they can autonomously discern 

intricate patterns and features from waveform data, eliminating the need for manual 

feature engineering. Additionally, deep learning models can systematically abstract 

features by extracting both low-level local characteristics and high-level global features, 

facilitating a more precise comprehension and representation of semantic information in 

microseismic event waveforms. Furthermore, deep learning leverages extensive dataset 

training, contributing to improved accuracy and generalization capabilities (He et al., 

2022) when addressing noise and variability in microseismic event recognition tasks. 

However, it is important to acknowledge that deep learning methods may demand more 

computational resources and time due to the training process involving multiple layers of 

neural networks. 

3. Transfer Learning Methods 

Transfer learning methods have been proven effective in reducing the need 

for a large amount of labeled data and speeding up the training process (Ding et al., 2022; 

Dong et al., 2023; Wang et al., 2022). They allow us to leverage knowledge learned from 

rich general image datasets and apply it to the specific task of microseismic event 

recognition. By incorporating transfer learning techniques into our workflow, we can 

enhance the performance and efficiency of deep learning models in microseismic event 

waveform image recognition tasks. 

Therefore, transfer learning methods offer a powerful solution for 

microseismic event waveform image recognition. By utilizing pre-trained models, 

performing feature extraction, and addressing domain shifts, we can enhance the 

performance and adaptability of deep learning models in microseismic event recognition. 

2.3.4 Hybrid Optimization Methods 

Hybrid optimization methods play an important role in microseismic event 

recognition and classification, combining different optimization techniques and 

algorithms to improve model performance and efficiency. For example, in this paper 

(Peng et al., 2020), an automatic classification method based on deep learning is proposed 

for identifying suspicious microseismic events in underground mines. Using a genetic 

algorithm-optimized correlation-based feature selection, 11 representative features are 
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selected from the extracted time and frequency domain features. By dividing 

microseismic records into frames and utilizing an 11×50 feature matrix as input, a 

convolutional neural network with 35 layers is trained on 20,000 samples, achieving a 

98.2% accuracy in correctly determining the event type, surpassing traditional machine 

learning methods. GA evolves candidate solutions within a population using principles 

inspired by natural selection and genetic operations, gradually finding better solutions. 

This hybrid optimization strategy accelerates model convergence and improves 

optimization performance in microseismic event recognition tasks. 

In another study (Rao et al., 2021), the PSO-ELM model, based on the particle 

swarm optimization (PSO) algorithm and extreme learning machine (ELM), was 

successfully applied to discriminate microseismic events and blasts in mines, 

demonstrating its superior performance compared to other intelligent discrimination 

models, thus providing a promising method for ensuring mine safety and smooth 

operation. 

In addition, hybrid optimization approaches also integrate traditional machine 

learning algorithms with deep learning models (Azevedo et al., 2024). Traditional 

machine learning algorithms excel in feature extraction and classification tasks, while 

deep learning models are proficient at learning feature representations from raw data. By 

using traditional machine learning algorithms for feature engineering and dimensionality 

reduction, followed by utilizing the extracted features as input for deep learning models, 

the strengths of both approaches can be fully leveraged to enhance microseismic event 

recognition performance and efficiency. 

For instance, a study (Li et al., 2021) proposed an interpretable deep learning model 

that utilizes three-dimensional attention maps and high-resolution spectral analysis to 

improve the accuracy and efficiency of seismic phase analysis, as well as reveal subtle 

relationships between geology and seismic spectra. The experimental results demonstrate 

that this trainable deep dilated convolutional neural network (ADDCNN), based on soft 

attention mechanisms, achieves improvements in classification accuracy, computational 

efficiency, and optimization performance while reducing model complexity. 

In conclusion, the application of hybrid optimization methods holds significant 

importance in microseismic event recognition and classification. By combining 
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techniques such as Genetic Algorithms, gradient optimization, metaheuristic algorithms, 

and traditional machine learning algorithms with deep learning models, we can further 

improve the performance and generalization ability of models, addressing the challenges 

in microseismic event analysis. The development of these hybrid optimization methods 

continues to drive progress in the field, providing effective solutions for more accurate 

and reliable microseismic event recognition. 

2.4  Summary 

The development of microseismic signal identification and classification methods 

highlights three notable trends: (1) the integration of machine learning methods, (2) the 

emergence of deep learning models, and (3) the amalgamation of hybrid models and 

algorithm optimization. Each developmental stage has distinct characteristics. 

Firstly, the introduction of machine learning methods significantly alleviates the 

burden of traditional manual identification and classification of microseismic signals, 

thereby improving signal processing efficiency. By utilizing machine learning algorithms 

for tasks such as feature extraction, classification, and clustering, the analysis of a large 

volume of microseismic data can be automated, reducing human intervention and 

enhancing speed and accuracy. This trend makes microseismic event monitoring and 

analysis more feasible and efficient. 

Secondly, with the advent of deep learning models, it becomes feasible to cultivate 

more accurate classification models by leveraging extensive collected data, significantly 

improving the accuracy and reliability of microseismic signal identification and 

classification. Deep learning models possess strong learning and representation 

capabilities, enabling them to automatically learn complex feature representations and 

train high-performance models on large-scale datasets. Through deep learning models, 

key features in microseismic signals can be better captured, leading to more precise 

identification and classification. 

Lastly, the optimization of models and algorithms aims to achieve higher 

computational efficiency while maintaining high accuracy or shifting the focus towards 

improving model generalization and robustness. By employing hybrid models and 

algorithm optimization techniques such as genetic algorithms, metaheuristic algorithms, 

and ensemble learning, the strengths of different approaches are combined to enhance the 
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performance and efficiency of microseismic event identification and classification tasks. 

Furthermore, parameter tuning and algorithm optimization play a crucial role in 

improving system performance. These optimization methods aim to improve 

computational efficiency, reduce computational costs, and enable models to adapt to 

various data and scenarios. 

In conclusion, the development of microseismic signal identification and 

classification methods exhibits three important trends: the integration of machine learning 

methods, the emergence of deep learning models, and the amalgamation of hybrid models 

and algorithm optimization. These trends drive advancements in the field of microseismic 

event analysis, providing more reliable and efficient solutions for automated processing 

and accurate determination of microseismic events.  
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CHAPTER 3 

DATA AND METHODOLOGY  

3.1 Introduction 

This study aims to achieve rapid and accurate identification and classification of 

microseismic signals in the mining environment. The research encompasses computer 

vision techniques and machine learning algorithms, primarily utilizing data from metal 

mines. Initially, microseismic signals are transformed into event waveform images. 

Utilizing computer vision techniques such as image processing, recognition, and 

classification, databases of different event waveform images are established. 

Subsequently, machine learning algorithms, including SML, CNN, and DNN, are 

employed. These algorithms are trained using sample databases from different mining 

areas to obtain the optimal model, thereby improving the accuracy and timeliness of 

microseismic signal identification and classification. 

To ensure the reliability and effectiveness of the research, extensive testing will be 

conducted using a large dataset of real microseismic signal data. A comprehensive 

evaluation of the model's performance will be carried out by comparing it with existing 

research methods and image classification models. Performance metrics such as accuracy, 

recognition duration, precision, recall, and F1 score will be used to select the best-

performing model. The ultimate goal is to provide more reliable and intelligent technical 

support for microseismic monitoring (Chen et al., 2022) and mining safety research, 

promoting the intelligent transformation and safe development of mining operations. 

This chapter provides a comprehensive overview of the experimental dataset, 

methodology, and the foundational principles guiding the research. It begins with an 

introduction to the data collection environment, equipment used, waveform 

characteristics of microseismic monitoring events, and the data preprocessing process. 
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Subsequently, it details the commonly used machine learning methods and their 

principles, as well as the specific models employed in this study. Finally, the chapter 

concludes with an overview of the metrics used to evaluate the models. 

3.2  Data 

3.2.1 Data Collection 

The datasets used in this study were collected from three different mines located in 

Baoji City, Shaanxi Province, China (as shown in Figure 3.1). These mines, namely A, 

B, and C, are situated in different villages within Feng County. Mine A is located in 

Pingkan Town, with geographical coordinates ranging from 106°55' to 106°58' east 

longitude and 33°54' to 33°57' north latitude. The mining area stretches from Yanjiaping 

in the west to Hetougou in the east, and from Yindonggounao in the north to Sihao 

Gounao in the south, covering an area of 16 square kilometers. It is a large-scale ductile 

shear-type gold deposit. Mine B is situated in Yinmusi Village, Pingkan Town, and is a 

lead-zinc mine. Mine C, located in Liufengguan Village, Liufengguan Town, is also a 

lead-zinc mine with a mining area of 0.95 square kilometers. The environmental 

disparities among these mines inevitably introduce variations in the characteristics of the 

collected microseismic monitoring data. 

 

Figure 3.1 Geographical locations of the microseismic monitoring data sources. 
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The data collection process involved the use of specialized equipment and software 

systems for microseismic monitoring. In terms of hardware, signal detectors (sensors) and 

data acquisition devices (base stations) were strategically deployed in key areas within 

each mine to capture microseismic signals generated during mining operations. These 

sensors were responsible for the real-time recording of microseismic events, with the 

captured signals transmitted to the base stations. The base stations, in turn, received and 

transmitted the signals to the central monitoring system. Taking Mine A as an example, 

based on the safety monitoring requirements of the mine, a total of 26 sensors were 

installed at different depths in five working sections. These sensors are connected to seven 

sub-collection systems and ultimately linked to the central processing system via optical 

fibers. The sampling frequency range for each sensor is from 50 Hz to 8000 Hz. 

In addition to the hardware equipment, dedicated software systems were utilized for 

microseismic monitoring. Figure 3.2 displays the software and hardware infrastructure of 

the microseismic monitoring system used in the mines. 



 

45 

 

Figure 3.2 Software and hardware infrastructure of the microseismic monitoring system 

at Central South University. 

These software systems enabled real-time acquisition, processing, and analysis of 

microseismic signals. They provided a comprehensive suite of tools and functionalities 

for visualizing and interpreting the collected data. Overall, the datasets used in this study 

were obtained through the integrated application of advanced hardware infrastructure and 

software systems. This ensured the reliability and usability of the dataset for further 

analysis and model development. 

 

 

 

     ata acquisition  ase stations a   ensors 

 opyright   ard  oc   isaster  revention and 

 ontrol  ea ,  entral  outh  niversity

 c   o t are  odule



 

46 

3.2.2 Data Preprocessing 

Previous studies have shown that if fewer than four sensors are triggered during 

event detection, there will be insufficient known parameters to accurately calculate the 

location of the microseismic source and other key information (Dong et al., 2011). As 

more sensors simultaneously detect the signal, the reliability of the microseismic events 

also increases when evaluating their validity. To ensure the complete validity of events, 

we chose events captured by at least six sensors. Therefore, during data preprocessing, 

we set a criterion: only when a microseismic event detected by at least six sensors is 

triggered, it is considered a valid event. Otherwise, the signal will be filtered out. 

Considering the high accuracy of image classification and the widespread application of 

computer vision techniques, this study uses event waveforms as inputs for classification 

and recognition. We input the images on an event-by-event basis, with each image 

containing six waveforms to differentiate individual valid events. We demonstrate the 

waveform data sorted by signal capture and ultimately generate the output of six-subplot 

event waveforms. 

We use the Python plotting library (Matplotlib) to plot event waveforms from the 

data collected by the sensors. Based on waveform characteristics and engineering 

expertise, microseismic and blasting events constitute the most critical part of the raw 

dataset. Furthermore, noise events comprise a significant portion of the recorded data, 

with rock-cutting events being particularly frequent. By "converting noise into use," we 

combine the waveform plots of the raw dataset with engineering experience to create 

three databases, A, B, and C, consisting of four different categories of events: 

microseismic events, blasting events, rock drilling events, and noise events. Each event 

is treated as a separate unit. Figure 3.3 displays the typical results of these four types of 

event waveforms. In each subplot of the figure, the horizontal axis represents Time (ms) 

and the vertical axis represents Amplitude (V). These events exhibit unique waveform 

characteristics. 
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(a) Microseismic event waveforms 

 

(b) Blast event waveforms 

 

(c) Drilling event waveforms 

 

(d) Noise event waveforms 

Figure 3.3 Examples of 6-channel waveform images for four-type microseismic 

monitoring events. 

• Microseismic events appear as a single continuous waveform with low 

amplitude, low frequency, short duration, and rapid attenuation, as shown in Figure 3.3(a). 

• Blasting waveforms vary depending on the time interval between 

explosions and feature recurring peaks. They are typically characterized by high 

amplitude, high-frequency signals with long duration and significant signal variations. 

Blast signals usually evolve from a rapid initial decay without a developed tail wave to a 

slow, developed tail wave, as shown in Figure 3.3(b). 

• Drilling event waveforms exhibit repetitive periodic vibrations, reflecting 

the operating impact frequency of drilling equipment, as shown in Figure 3.3(c). 

• Noise events, due to their numerous and diverse sources, result in different 

waveforms: (1) chute release signals, recording small-amplitude oscillations within the 

main amplitude, usually detected by sensors close to the chute; (2) scraper operations, 
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continuous waveform events lasting two to three seconds; (3) fan vibrations, typically 

characterized by unordered continuous waveforms, detectable by sensors near the fan; (4) 

power disturbance signals, typically represented as continuous waveforms with large 

amplitudes, short rise times, simple oscillation patterns, and no attenuation characteristics, 

as shown in Figure 3.3(d). These signals are mainly received by sensors located close to 

the power source. 

After obtaining the event waveform sample databases for each mine, we divide the 

samples into training sets (80%) and testing sets (20%) in a 4:1 ratio to ensure consistency 

between the training and testing samples for each model (Brownlee, 2016). The training 

set is used to train the machine learning models, while the testing set is used to evaluate 

the performance of the trained models on unseen data. Table 3.1 provides detailed 

information about the A, B, and C mine datasets used in this study. 

Firstly, each dataset comes from a different mining area, so there will be some 

differences in geological characteristics and data features. This effectively tests the 

model's generalization and robustness. Secondly, datasets A and C have relatively long-

time spans, covering nearly two years of data, while dataset B has a shorter time span of 

about five months. Lastly, the sample sizes of datasets A and B are similar, while dataset 

C has the largest sample size, significantly more than datasets A and B, with dataset C 

being approximately 2.6 times the size of dataset A. 

Table 3.1 Microseismic monitoring event waveforms datasets from three mines 

The purpose of splitting the data into training and testing sets is to avoid overfitting 

issues. If we evaluate the model using all the data during training, the model may overly 

memorize the features and noise present in the training set, resulting in poor performance 

Mine Date time Dataset 
Four categories 

MS Blast Drilling Noise 

A 25/4/2022-8/12/2023 6422 2176 1826 1040 1380 

B 28/6/2023-24/11/2023 6540 2000 348 2062 2130 

C 29/4/2022-14/12/2023 16668 6446 2832 3260 4130 

Total 29630 10622 5006 6362 7640 
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on unseen data. By dividing the data into training and testing sets, we can objectively 

evaluate the model's performance and validate its ability to generalize to unknown data. 

In addition, cross-validation techniques can be used during model selection and 

parameter tuning to further optimize model performance (Schumacher et al., 1997). 

Cross-validation involves dividing the training set into multiple subsets and using one 

subset as a validation set to assess the model's performance. This allows for a more 

comprehensive evaluation of the model's performance and stability. Through cross-

validation, we gain a better understanding of how the model performs on different subsets 

and can select the best model parameters and configurations. 

3.3 Methods 

Through the collection and processing of real microseismic signals, combined with 

manual expertise, image processing, and techniques for identification and classification, 

the aim is to improve the accuracy and efficiency of microseismic signal classification. 

To achieve this research goal, the study follows a seven-step approach: data preparation, 

construction of microseismic event waveform image databases, selection of machine 

learning algorithms, parameter optimization, model training, model evaluation, and 

model application. The specific explanations for each step are as follows: 

1. Data Preparation: Before identifying and classifying microseismic signals, a 

large amount of real microseismic signal data needs to be collected from field sources. 

Subsequently, programming languages like Python are utilized to perform image 

processing on the collected microseismic signals, converting them into waveform images, 

and applying computer vision techniques (Zhang et al., 2024). 

2. Construction of Microseismic Event Waveform Image Database: Based on 

engineering experience and expert recognition and classification, manual identification 

and labeling of microseismic event waveform images obtained from mining sites are 

conducted to establish a database comprising four categories: microseismic events, 

explosion events, rock-cutting events, and noise events. 

3. Method Selection: This study employs machine learning algorithms suitable for 

image classification, such as support vector machines (Campbell et al., 2022), 

convolutional neural networks, and deep neural networks (Cao et al., 2022), to train the 
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classification model, thereby improving the recognition efficiency and classification 

accuracy of microseismic events. 

4. Parameter Optimization: Model parameters are updated through algorithm 

optimization to enhance the performance of training data. This often involves selecting 

appropriate loss functions and optimization algorithms to minimize prediction errors (Fu 

et al., 2024). 

5. Model Training: The selected model is trained using the training data, with 

continuous adjustment of model parameters to minimize the loss function. 

6. Model Evaluation: Comprehensive evaluation and analysis are conducted to 

ensure the effectiveness of the proposed machine learning model (Rainio et al., 2024). A 

comparison with existing methods is performed to determine its advantages, limitations, 

and applicability. 

7. Model Application: Finally, the trained model is applied to the identification and 

classification of newly generated microseismic signals to validate its practicality and 

reliability. 

Through this process, this study achieves automatic recognition and classification 

of microseismic events, providing reliable and intelligent technological support for 

microseismic monitoring and mining safety. 

3.3.1 HOG-SML Method 

Based on existing research and literature review, Shallow Machine Learning (SML) 

algorithms exhibit various advantages in microseismic signal classification (Möller, 

2023). Firstly, compared to complex models such as deep neural networks, shallow 

machine learning algorithms have lower computational complexity and resource 

requirements. This enables them to perform rapid inference and classification in real-time 

applications, such as real-time event recognition in microseismic monitoring systems. 

Secondly, the model structure of shallow machine learning algorithms is relatively simple, 

making their decision processes easy to understand and explain. This facilitates a better 

understanding of the model's predictions by researchers and domain experts, providing 

valuable insights for interpreting and analyzing microseismic signals. Additionally, 

despite not having the same complex representation capabilities as deep neural networks, 
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shallow machine learning algorithms demonstrate good performance in small sample 

situations, showing good generalization ability. Even with limited training data, they can 

still learn effective patterns.  

Moreover, shallow machine learning algorithms typically have only a few 

adjustable hyperparameters, making their adjustment and optimization relatively simple. 

Through appropriate parameter selection and optimization strategies, their performance 

in microseismic signal classification tasks can be further improved. In summary, these 

advantages make shallow machine learning algorithms crucial tools in the field of 

microseismic monitoring and mining safety, providing reliable and efficient technical 

support. Therefore, to construct a model with high accuracy and fast recognition 

efficiency, we employed the combination of HOG (Histogram of Oriented Gradients) 

(Dalal et al., 2005)feature extraction algorithm and shallow machine learning algorithms 

to develop a recognition and classification model based on microseismic waveform 

images. 

Regarding the choice of feature extraction algorithm, we selected the HOG 

algorithm to perform feature extraction on microseismic waveform images. This decision 

was based on several reasons. Firstly, the HOG algorithm (Cheng et al., 2023) is capable 

of effectively describing local texture and shape features in images, particularly suitable 

for images with distinct edges and textures. Secondly, HOG features are insensitive to 

changes in lighting conditions and colors, maintaining a certain level of stability. 

Additionally, the HOG algorithm has fast computational speed, making it suitable for 

applications with high real-time requirements. Considering the advantages of the HOG 

algorithm in feature description, stability, and computational speed (Chapelle et al., 1999), 

we chose it as the method for extracting features from microseismic waveform images. 

In terms of selecting shallow machine learning algorithms, we utilized SVM due to 

its superior overall performance (Ji et al., 2020). Furthermore, for comparison purposes, 

we also included four other classification algorithms, namely linear classifiers, decision 

trees, KNN, and Fisher discriminant. By comparing these algorithms, we can 

comprehensively evaluate their effectiveness and performance in microseismic signal 

classification. 
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Figure 3.4 illustrates the architecture of the microseismic monitoring event 

waveform recognition and classification model that utilizes the HOG-SML method. This 

model consists of two key components: HOG feature extraction and shallow machine 

learning classifiers. The subsequent sections will provide a detailed explanation of the 

principles, methodologies, and fundamental computational formulas employed in these 

components. 

 

Figure 3.4 The architecture of the microseismic monitoring event waveform 

recognition and classification model using the HOG-SML method. 

1. HOG feature extraction 

The principle of Histogram of Oriented Gradients (HOG) feature extraction is based 

on the gradient distribution of local textures and shapes in an image. By calculating the 

gradient values and directions of each pixel, it becomes possible to capture texture and 

edge information from different regions of the image. 

In the process of HOG feature extraction, the original image (432×288 pixels) is 

first resized to 200×200 pixels. Then, the image is divided into small cells of size 8×8, 

forming a grid of 25×25 cells. Each cell contains 128 values representing gradient and 

angle information, organized into a 9-length array called the gradient histogram. The 9 

values in the histogram correspond to angles 0, 20, 40, 60...160, collectively forming 9 

bins in each histogram. 
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Next, for each cell, the gradient magnitude (G) and gradient direction (θ) are 

calculated based on the horizontal and vertical gradient values (Gx, Gy) of each pixel, 

using Equations (3.1) and (3.2). The image is then further divided into smaller local 

blocks, with each block consisting of 2×2 cells, resulting in a total of 36 values per block. 

Within each local block, the gradient histograms are computed and normalized. In the 

entire image, there are 24 positions horizontally and 24 positions vertically, giving a total 

of 24×24=576 blocks. 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 (3.1) 

𝜃 = arctan⁡ (
𝐺𝑦

𝐺𝑥
) (3.2) 

Finally, the gradient histograms obtained from all local blocks are concatenated to 

form the final feature vector representation. Therefore, all the feature vectors from these 

blocks are merged into a one-dimensional vector with a size of 20736. 

The HOG feature extraction method, which is based on gradient computation, is 

widely used in the field of image processing due to its excellent performance and stability. 

In this study, we employed the HOG algorithm to extract features from the six-channel 

waveform graphs of microseismic monitoring events. Following the aforementioned 

steps, we obtained a suitable feature representation for subsequent classification models. 

2. SVM classifier 

Support Vector Machine (SVM) is a widely used machine learning algorithm for 

pattern recognition and classification tasks (Cervantes et al., 2020). In this study, we 

employed an SVM classifier to categorize feature vectors extracted by HOG. The 

principle of the SVM classifier is based on finding an optimal hyperplane to effectively 

separate data samples from different categories. For four-class event classification, a 

multi-class problem is addressed, where each category represents a specific event type. 

SVM handles multi-class problems by constructing multiple binary classifiers, commonly 

using strategies such as “one-vs-all” and “one-vs-one” (Krawczyk et al., 2015). 

• “ ne-vs-all” strategy   onstruct a  inary classi ier  or each category, 

labeling samples from the i-th class as positive (𝑦 = 1) and all other classes as negative 
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(𝑦 = −1). For four-class events, we obtain four binary classifiers, each corresponding to 

one event category. 

•“ ne-vs-one” strategy   onstruct a  inary classi ier  or each pair o  category 

combinations. For example, with four categories, six binary classifiers are built (C1 vs C2, 

C1 vs C3, C1 vs C4, C2 vs C3, C2 vs C4, C3 vs C4). The final category is determined through 

voting or other ensemble methods.  

During the training phase, SVM learns how to partition samples from different 

categories using labeled training data. In the testing phase, inputting a sample for 

classification, SVM predicts and assigns it to the most likely category based on the 

learned model. The following outlines the core formulas used in the SVM classification 

of four categories: 

(1) The SVM model can be represented as Equation (3.3): 

𝑦 = 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ∙ 𝑥 + 𝑏) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏) (3.3) 

where y is the label vector; 𝑓(𝑥) is the decision function used to predict the class of input 

sample x. w is the weight vector that represents the importance of different features in 

classification. x is the feature vector of the input sample. b is the bias term used to adjust 

the threshold of the decision function. 

The decision function 𝑓(𝑥) determines which class x belongs to the result of 𝑤𝑇𝑥 + 𝑏. If 

𝑤𝑇𝑥 + 𝑏 > 0, x is predicted as a positive class; if it is less than zero, x is predicted as a 

negative class (Equation (3.4)): 

{
𝑤𝑇𝑥 + 𝑏 > 0, 𝑦 = 1

𝑤𝑇𝑥 + 𝑏 ≤ 0, 𝑦 = −1
 (3.4) 

(2) SVM optimization problem: The training process of the SVM model 

involves finding the optimal weight vector w and bias term b, in order to minimize the 

classification error on the training samples and separate samples from different classes. 

To maximize the margin between classes, it is required to satisfy the following Equation 

(3.5): 
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min𝑤(𝑏) =
1

2
||𝑤||2 + 𝐶∑(1, 𝑛) 𝛿𝑖 

𝑠. 𝑡. 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) ≥ 1 − ⁡𝛿𝑖 

𝛿𝑖 ≥ 0, 𝑖 = 1,… , 𝑛 

(3.5) 

where C is the regularization parameter that balances the size of the margin and the 

penalty for misclassification. 𝛿𝑖 is a slack variable that allows some data points to be on 

the wrong side of the margin. 𝑥(𝑖) is the feature vector of the training sample, and 𝑦(𝑖) is 

the label of the training sample, taking values of 1 or -1, representing positive class and 

negative class, respectively. 

(3) Testing phase: For a new sample x to be classified, input it into the trained 

binary classifiers, and calculate its distance to each hyperplane. The distance formula is 

given by Equation (3.6): 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑤𝑇𝑥 + 𝑏|

‖𝑤‖
 (3.6) 

 or the “one-vs-all” strategy, assign the sa ple to the category  ith the  a i u  

distance as the prediction. In other words, select the category represented by the 

hyperplane  ith the  arthest distance as the  inal classi ication result.  or the “one-vs-

one” strategy, use voting or other ense  le  ethods to deter ine the  inal category.  ach 

binary classifier outputs a category result, and the final classification label is determined 

 ased on these results.  n this study,  e choose “one-vs-one” strategy. 

3. Linear classifier 

Secondly, we employed the linear classifier to categorize feature vectors extracted 

by HOG. The principle of a linear classifier for four-class classification is based on 

defining a decision boundary in the feature space using a linear equation. The general 

form of a linear classifier is given by Equation (3.7): 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 (3.7) 

where x is the feature vector of the input sample. b is the bias term used to adjust the 

threshold of the decision function. w is the weight vector that represents the importance 
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of different features in classification. 𝑓(𝑥) is the decision function used to predict the 

class of input sample x.  

When the output of the decision function 𝑓(𝑥) is greater than zero, the sample is classified 

into the positive class; when it's less than zero, the sample is classified into the negative 

class. For four-class classification, different thresholds can be set to determine the specific 

class for a given sample (Equation (3.8)): 

𝑦 = {
1,
−1,

if⁡𝜔𝑇𝑥 + 𝑏 > 0

otherwise
 (3.8) 

4. Fisher Discriminant 

Fisher Discriminant analysis is typically designed for binary classification 

problems. However, it can be extended for multiclass classification, including cases with 

four classes (Rozza et al., 2012). Here is a simplified formulation for a Fisher 

Discriminant classifier with four classes:  

(1) Calculate the mean vectors 𝑚𝑖 for each class (for four classes, there are 

𝑚1, 𝑚2, 𝑚3, 𝑚4). 

(2) Compute the within-class scatter matrix 𝑆𝑊 and the between-class scatter 

matrix 𝑆𝐵. The formula is given by Equation (3.9): 

{
 
 

 
 𝑆𝑊 =∑ ∑ (𝑥 −𝑚𝑖)(𝑥 − 𝑚𝑖)

𝑇

𝑥∈𝐶𝑖

4

𝑖=1

𝑆𝐵 =∑ 𝑛𝑖(𝑚𝑖 −𝑚)(𝑚𝑖 −𝑚)
𝑇

4

𝑖=1

 (3.9) 

where 𝑛𝑖 is the number of samples in class 𝐶𝑖, and 𝑚 is the overall mean vector. 

(3) Solve the generalized eigenvalue problem 𝑆𝑊
−1𝑆𝐵  to obtain eigenvalues 

and corresponding eigenvectors. 

(4) Select the top 𝑐 − 1 eigenvectors with the largest eigenvalues, where c is 

the number of classes, to form a projection matrix W. 

(5) Fisher discriminant classifier aims to find a projection direction to 

maximize the separation between different categories in the projected space. Specifically, 
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it determines the optimal projection direction by computing the ratio of between-class 

scatter and within-class scatter, as expressed in Equation (3.10): 

𝐽(𝑤) =
𝜔𝑇 ∙ 𝑆𝐵 ∙ 𝜔

𝜔𝑇 ∙ 𝑆𝑊 ∙ 𝜔
 (3.10) 

where 𝜔 is the projection direction, 𝑆𝐵 is the between-class scatter matrix, and 𝑆𝑊 is the 

within-class scatter matrix. Solving this optimization problem yields the optimal 

projection direction 𝜔. Classify based on the projected values, typically using thresholds 

or other rules. 

5. Decision tree  

The decision tree is a classification algorithm based on a tree-like structure that 

classifies samples by continuously partitioning the feature space. Each node in a decision 

tree represents a feature test, and samples are allocated to different branches based on the 

values of that feature. By recursively constructing the decision tree, accurate 

classification of samples can be achieved (Chen et al., 2020). The classification process 

of the decision tree is based on a series of feature tests and partitioning rules. For each 

node, the optimal feature is selected for testing, and samples are allocated to different 

branches based on the values of that feature.  

When constructing a decision tree model, the core computational formulas involved 

primarily include entropy, information gain, and the Gini index. Below is a detailed 

explanation of these mathematical formulas. 

(1) Entropy 

Entropy is used to measure the impurity of a dataset, defined as Equation 

(3.11): 

𝐻(𝐷) = −∑ 𝑝𝑖log2𝑝𝑖
𝑚

𝑖=1
 (3.11) 

where 𝐻(𝐷)  is the entropy of dataset D, m is the number of classes, and 𝑝𝑖  is the 

probability of class i. 

(2) Information Gain 

Information gain is used to select the optimal splitting feature, defined as Equation (3.12): 
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𝐼𝐺(𝐷, 𝐴) = 𝐻(𝐷) −∑
|𝐷𝑣|

|𝐷|𝑣∈values(𝐴)
𝐻(𝐷𝑣) (3.12) 

where 𝐼𝐺(𝐷, 𝐴) is the information gain of feature A for dataset D, and 𝐷𝑣 is the subset of 

D where feature A has value v. 

(3) Gini Index 

The Gini index is used to measure the impurity of a dataset, defined as Equation (3.13): 

𝐺𝑖𝑛𝑖(𝐷) = 1 −∑ 𝑝𝑖
2

𝑚

𝑖=1
 (3.13) 

where 𝐺𝑖𝑛𝑖(𝐷) is the Gini index of dataset D, m is the number of classes, and 𝑝𝑖 is the 

probability of class i. 

For the Gini index of feature A, it is defined as Equation (3.14): 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) =∑
|𝐷𝑣|

|𝐷|𝑣∈values(𝐴)
𝐺𝑖𝑛𝑖(𝐷𝑣) (3.14) 

(4) Selecting Features using Information Gain 

When using information gain to select the optimal splitting feature, the feature 

with the highest information gain is chosen (Equation (3.15)): 

𝐴∗ = arg𝑚𝑎𝑥𝐴 𝐼𝐺(𝐷, 𝐴) (3.15) 

(5) Selecting Features using the Gini Index 

When using the Gini index to select the optimal splitting feature, the feature 

with the lowest Gini index is chosen (Equation (3.16)): 

𝐴∗ = arg𝑚𝑖𝑛𝐴 𝐺𝑖𝑛𝑖(𝐷, 𝐴) (3.16) 

The process of constructing a decision tree is a recursive partitioning process. 

Using the above core computational formulas, the optimal splitting feature is selected, 

and the dataset is recursively divided into subsets until the stopping criteria are met. 
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6. KNN classifier 

The k-nearest neighbors algorithm determines the category of a sample by 

comparing its distance to samples in the training set (Chugh et al., 2020). Specifically, in 

KNN, we first select a distance metric (such as Euclidean distance), then sort the samples 

in the training set based on distance from smallest to largest. Finally, we choose the k 

nearest neighbors and determine the category of the sample based on the categories of 

these neighbors. 

In the task of intelligent recognition and classification of microseismic event 

waveforms, the choice of classifiers such as SVM, linear classifier, Fisher discriminant, 

decision tree, and KNN is due to their distinct characteristics and advantages that cater to 

different classification needs. The characteristics and advantages of each model are 

summarized in Table 3.2 below. 

Table 3.2 Characteristics and advantages of the five classifiers 

Model Characteristics Advantages 

SVM 

Finds the optimal hyperplane to 

separate data by maximizing the 

margin between classes. 

Can handle data in high-dimensional 

spaces, suitable for complex 

classification problems. 

Can address non-linearly separable cases 

using kernel functions. 

Effectively prevents overfitting, especially 

in high-dimensional spaces. 

Performs well with small sample sizes. 

Linear 

Classifier 

Assumes data is linearly separable 

and uses linear equations to classify 

data into different categories. 

Low computational complexity, with fast 

training and prediction speeds. 

Suitable for datasets with a clear linear 

relationship between features and classes. 

High interpretability and easy to 

understand and implement. 

Fisher 

Discriminant 

Based on Linear Discriminant 

Analysis (LDA), it classifies by 

maximizing the ratio of between-

class variance to within-class 

variance. 

Performs well when the distribution of 

sample classes is Gaussian. 

Can reduce dimensionality while retaining 

maximum classification information, 

improving accuracy. 

Suitable for multi-class classification 

problems. 

Decision 

Tree 

Recursively selects the best features 

to split data, forming a tree structure. 

Intuitive and easy to interpret, with clear 

visualization of classification decisions. 

Can handle categorical and numerical 

features. 

Does not require data normalization. 
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Table 3.2 Characteristics and advantages of the five classifiers (continued) 

Model Characteristics Advantages 

KNN 

Instance-based learning method that 

classifies by calculating the distance 

between the sample to be classified 

and the training samples. 

Simple implementation with no training 

process, classification is done by 

calculating distances. 

Performs well on complex decision 

boundaries. 

Classification performance improves as 

training data increases. 

The classifiers were chosen for their unique strengths, which cater to different needs 

in the intelligent recognition and classification of microseismic event waveforms. SVM 

and Fisher discriminant classifiers are suitable for handling high-dimensional and 

multiclass problems, while linear classifiers are computationally efficient. Decision trees 

are easy to interpret and can handle nonlinear relationships, and KNN performs well in 

complex boundary situations. Comparing these classifiers provides a comprehensive 

classification approach, ensuring good performance across various data characteristics 

and classification requirements. 

3.3.2 CNN Method 

Convolutional neural networks (CNNs) are an important form of deep learning, 

known for their powerful feature extraction capabilities and effectiveness in handling 

complex data such as images and audio. In this study, a CNN-based image classification 

model is adopted. Figure 3.5 shows the architecture of CNN. It includes an input layer, 

an output layer, and several hidden layers. The hidden layers are comprised of 

convolutional layers, pooling layers, ReLU (Rectified Linear Unit) layers, and fully 

connected layers. The model leverages components such as convolutional layers, pooling 

layers, and fully connected layers to extract features and make predictions. The 

optimization objective is achieved by using the cross-entropy loss function (Zhang et al., 

2018). 
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Figure 3.5 CNN image classification architectures. (a) General architecture for CNN. 

(b) Architecture CNN-based for microseismic event waveform images. 

CNN is a type of deep learning model specifically designed for processing image data. 

The training process typically includes the following major steps: 

1) Data Preparation: 

• Data Collection: Gather a large amount of annotated image data. 

The dataset is usually divided into training, validation, and test sets. 

• Data Preprocessing: Normalize the images and apply data 

augmentation techniques (such as rotation, cropping, flipping, etc.) 

to enhance the model's generalization ability. 

2) Model Construction: 

• Convolutional Layers: Extract spatial features from the images. 

Through convolution operations (using filters/kernels), extract 

features from edges and textures to more complex features in a 

hierarchical manner. 

• Pooling Layers: Reduce the size of the feature maps, retain the 

main features, decrease computational complexity, and prevent 

overfitting. Common pooling operations include Max Pooling and 

Average Pooling. 
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• Fully Connected Layers: Flatten the extracted features and pass 

them to fully connected layers for classification tasks. The output 

of fully connected layers is usually the probability distribution of 

image categories. 

• Activation Functions: Such as ReLU, introduce non-linearity to 

enable the model to learn complex patterns. 

• Loss Functions: Such as Cross-Entropy Loss, measure the 

discrepancy between the model predictions and the true labels. 

3) Model Training: 

• Forward Propagation: The input images pass through the 

convolutional, pooling, and fully connected layers to produce the 

prediction results. 

• Loss Calculation: Compute the loss value based on the prediction 

results and the true labels. 

• Backward Propagation: Calculate the gradient of the loss with 

respect to each parameter using the Chain Rule. 

• Parameter Updates: Adjust the model parameters according to the 

gradients using optimization algorithms such as Stochastic 

Gradient Descent (SGD) or Adam to minimize the loss function. 

4) Hyperparameter Tuning: 

• Adjust learning rate, batch size, kernel size, number of layers, etc., 

and select the best combination of hyperparameters through Cross-

Validation. 

5) Model Evaluation: 

• Evaluate model performance using the validation set, and calculate 

metrics such as accuracy, precision, recall, and F1 score to ensure 

the model performs well on unseen data. 
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6) Model Testing: 

• Test the final model performance on the test set to assess its 

performance in real-world scenarios. 

The key points in training a CNN model are as follows:  

1. Convolution Operation 

The computation of the convolutional layer is a crucial component of the model. 

Features are extracted by applying a sliding window with filters over the image, enabling 

local perception. For an input feature map X and convolutional kernel weights W, the 

convolution operation can be represented by Equation (3.17): 

𝑌 = 𝑓(𝑐𝑜𝑛𝑣(𝑋,𝑊) + 𝑏) (3.17) 

where conv denotes the convolution operation and f represents the activation function. 

Through the convolution operation, local information in the feature map X is convolved 

with the convolutional kernel weights W, and the bias term b is added. The activation 

function f introduces nonlinearity to enhance the expressive power of the model. 

2. Pooling Operation 

The pooling layer is used to reduce the size of the feature map while retaining 

important information. The size of feature maps is reduced by taking the maximum or 

average value of local regions. For an input feature map X, the pooling operation can be 

represented by Equation (3.18): 

𝑌 = 𝑝𝑜𝑜𝑙(𝑋, 𝑘, 𝑠𝑡𝑟𝑖𝑑𝑒) (3.18) 

where pool represents the pooling operation, k denotes the pooling kernel size, and stride 

represents the stride. Common pooling operations include max pooling and average 

pooling, which perform pooling on local regions of the input feature map to obtain the 

output feature map Y. 

3. Activation Functions 

Activation functions introduce non-linearity, allowing the neural network to learn 

and model more complex functions and decision boundaries. This is crucial for tasks like 

image recognition, where data relationships are non-linear. They enable the neural 



 

64 

network to learn diverse features, with different layers capturing varying levels of 

complexity, such as edges and textures. Additionally, activation functions facilitate the 

efficient flow of gradients during backpropagation, mitigating issues like vanishing or 

exploding gradients common in deep networks. 

Common activation functions include Sigmoid, Tanh, and ReLU (Apicella et al., 

2021). Among these, ReLU is the most widely used in CNNs due to its simplicity and 

effectiveness. The ReLU function can be represented by Equation (3.19): 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.19) 

The input (𝑥) to the ReLU function is a real-valued number, which could be the 

output from a neuron in the previous layer of the neural network. The ReLU function 

applies the maximum function between 0 and the input value (𝑥). This operation results 

in: If 𝑥 is positive ( 𝑥 ≥ 0 ), the output is 𝑥, while if 𝑥 is negative (𝑥 < 0), the output is 

0. 

This means any negative input is set to zero, while positive inputs remain 

unchanged. The reasons for choosing ReLU as the activation function in this study are 

threefold: (1) ReLU is computationally efficient because it involves only a simple 

threshold operation. (2) ReLU activates only a portion of the neurons, promoting model 

sparsity, which improves computational efficiency and reduces the risk of overfitting. (3) 

ReLU helps mitigate the vanishing gradient problem, allowing gradients to flow more 

effectively through deeper networks. 

4. Fully connected layer 

The fully connected layer multiplies the feature vector 𝑋 obtained from the pooling 

layer with the weight matrix 𝑊 and adds the bias term 𝑏. The computation of the fully 

connected layer can be represented by the Equation (3.20): 

𝑌 = 𝑓(𝑊 ∙ 𝑋 + 𝑏) (3.20) 

where f represents the activation function. Through the fully connected layer, the model 

is able to combine and abstract the extracted features for better classification predictions. 
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5. Loss Function and Optimization 

Model parameters are gradually adjusted by calculating loss and applying 

backpropagation. To train the model, we utilize the cross-entropy loss function to measure 

the difference between the model's predicted results and the true labels. The cross-entropy 

loss function can be represented by the Equation (3.21): 

𝐿 = −∑(𝑦𝑙𝑜𝑔(𝑦_ℎ𝑎𝑡)) (3.21) 

where y represents the probability distribution of the true labels, and 𝑦_ℎ𝑎𝑡 represents the 

probability distribution of the predicted labels. By minimizing the cross-entropy loss 

function, the model gradually optimizes and reduces prediction errors. 

To update the model parameters, we employ the backpropagation algorithm (Yang 

et al., 1989) to compute the gradients of the parameters with respect to the loss function. 

Through the chain rule, the gradients are propagated from the output layer to the input 

layer, and optimization methods such as gradient descent (Yann et al., 1998) are used to 

update the parameters. In this way, the model is gradually optimized and its accuracy in 

image classification is improved. 

6. Regularization 

Techniques such as Dropout and L2 regularization are used to prevent overfitting. 

These methods improve the model's generalization ability, allowing it to perform better 

on unseen data. 

3.3.3 Transfer Learning Method 

Using transfer learning techniques, we employ three well-known DNN models 

(MobileNet-V2, Inception-V3, and ResNet-18) to accurately classify microseismic event 

images. Due to differences in network structures with sequential and residual 

connections, as well as variations in depth and convolutional kernel sizes in sequential 

architectures, neural networks exhibit variations in waveform recognition for different 

types of events. Building upon these classic models, we explore deep learning models 

with expert-designed and mature architectures. Furthermore, fine-tuning pre-trained 

networks through transfer learning is faster and easier compared to training from scratch. 

The transferred DNN models require less data and computational resources.  
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Despite the diverse landscape of transfer learning architectures and applications, 

the majority follow a standardized workflow. Figure 3.6 outlines the transfer learning 

workflow for image classification. (1) Pre-trained model selection: Taking the pre-trained 

Inception-V3 model as an example, a widely adopted 48-layer deep network trained for 

classifying a dataset containing 1000 object categories. (2) Replacement of final layers: 

To adapt the network for new image sets and categories, the last learnable layer and 

classification layer of Inception-V3 are replaced. The final fully connected layer is 

adjusted to match the new category count (e.g., 4 in this study), and the new classification 

layer generates output based on softmax-calculated probabilities. (3) Post-layer 

modification, the final fully connected layer determines the network's new category 

count, while the classification layer defines output in the new categories of interest (e.g., 

four categories). (4) Optional weight freezing: By setting the learning rate of earlier layers 

to zero, weights in these layers are selectively frozen, significantly expediting training. 

Weight freezing can prevent overfitting to small new datasets. (5) Model retraining: 

Retraining updates the network to recognize features relevant to new images and 

categories, typically requiring less data compared to training from scratch. (6) Prediction 

and accuracy evaluation: Post-retraining, the model classifies new images, and network 

performance is assessed. 

The calculation formulas of the transfer learning image classification model mainly 

involve the feature extraction part and the fully connected layer. By using a pre-trained 

model for feature extraction and performing classification prediction on a custom fully 

connected layer, an effective transfer learning model can be built to utilize the knowledge 

and features of the existing model to solve new image classification tasks. 
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Figure 3.6 The transfer learning workflow.  

1. Feature extraction in transfer learning 

In transfer learning, we will use a pre-trained convolutional neural network 

(pre-trained model) trained on a large-scale image dataset as a feature extractor. For a 

given input image x, the feature vector f(x) is obtained through forward propagation, 

which can be represented as: f(x)=CNN(x). 

2. Computation of the fully connected layer 

In transfer learning, we can choose to add a custom fully connected layer after 

the pre-trained model for classification prediction. Assuming the weight matrix of the 

fully connected layer is W and the bias term is b, and the feature vector is 𝑓(𝑥), the 

classification prediction result can be calculated using Equation (3.22). The softmax 

function converts the output values into a probability distribution. 

Furthermore, regarding the calculation of the loss function, as well as the 

backpropagation algorithm and parameter updates, they are the same as in CNN and will 

not be further elaborated here. 

In conclusion, through the above methods, we can build intelligent 

recognition models for microseismic events based on the HOG-SML method, CNN, and 
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deep learning with transfer learning methods, enabling accurate classification and 

recognition of microseismic events. 

3.4 MS-CNN Model 

Inspired by the literature [55], we integrated existing convolutional neural network 

(CNN) optimization techniques to construct the MS-CNN model (Figure 3.7) for the 

identification and classification of microseismic events. Our goal was to achieve a 

balance between recognition accuracy and classification efficiency, highlighting the 

advantages of this model. Compared to the original network structure presented in [55], 

which comprises 4 convolutional layers, 2 pooling layers, 1 fully connected layer, and 1 

dropout layer, our network structure consists of 3 convolutional layers, 2 max-pooling 

layers, 2 fully connected layers, and 1 dropout layer. The specific modifications include 

reducing the number of convolutional layers, adjusting the kernel size, introducing batch 

normalization layers after the convolutional and fully connected layers, and increasing 

the dropout rate (from 0.25 to 0.5). 

The settings of our model parameters adhere to general principles of CNN design, 

including gradually reducing spatial dimensions, increasing the number of channels, and 

employing batch normalization and ReLU activation functions to enhance performance 

and stability. Secondly, our model starts with smaller convolutional kernels and 

transitions to larger ones, which helps capture features at different scales. Thirdly, the 

fully connected layers have a large number of parameters, necessitating a sufficient 

amount of training data to fully leverage these parameters and prevent overfitting. 

Additionally, the use of a dropout layer is a rational choice to improve the model's 

generalization capability. 
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Figure 3.7 Model for microseismic event waveform recognition and classification 

based on convolutional neural networks (MS-CNN). 

We trained and tested the original and modified MS-CNN models on the same 

dataset. The final experimental results indicate that the MS-CNN model can achieve a 

higher classification accuracy within nearly the same amount of time, with an 

approximate improvement of about 5% in accuracy compared to the original model. 

The convolutional layers play a pivotal role in extracting feature values from 

microseismic waveform images by utilizing a set of learnable convolutional kernels (or 

filters). These kernels slide over the input waveform images to identify local patterns and 

features. Each kernel is responsible for extracting a specific feature, such as particular 

frequency components of the waveform or the arrival times of waves. As the 

convolutional kernel moves across the waveform image, it computes the weighted sum 

of local areas, generating feature maps. These feature maps are then used as higher-level 

feature representations to identify different categories of microseismic events. By 
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stacking multiple convolutional layers, the network can progressively build more 

complex and abstract feature representations from simple waveform characteristics, 

enabling efficient classification and identification of microseismic waveform images. The 

process of feature extraction in the convolutional layers is illustrated in Figure 3.8. 

 

Figure 3.8 Feature extraction process in convolutional layers for microseismic 

waveforms. 

Dropout is an efficient regularization technique that significantly enhances the 

generalization capability of CNNs (Poernomo et al., 2018). Its core mechanism involves 

randomly "dropping out" a certain proportion of neurons and their connections during the 

training process, preventing the network from overfitting to the training data. Specifically, 

each neuron is independently dropped with a certain probability, meaning that during 

each iteration, these neurons' outputs are set to zero and do not participate in the forward 

and backward propagation processes. This randomness encourages the network to learn 

more robust feature representations, as it cannot rely on any single neuron. The 

implementation principle of this process is clearly demonstrated in Figure 3.9. 

The role and benefits of Dropout layers are manifold. It reduces the risk of 

overfitting, achieves model regularization, and improves computational efficiency by 

sparsifying network representation. Additionally, Dropout aids in automatic feature 

selection and enhances the stability of the training process. During the testing phase, to 

prevent inconsistencies with the training phase outputs, the outputs of all neurons are 

typically multiplied by the complement of the dropout probability (for example, 0.5) to 

adjust the network's response. This adjustment ensures the model's performance on new 

data while maintaining the consistency of the learned feature representations from the 

training phase. In summary, by its unique randomness, Dropout not only enhances the 
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model's generalization ability but also simplifies the search for hyperparameters, 

providing a powerful tool for building efficient CNN models. 

 

Figure 3.9 Working principle of the Dropout layer. (a) is a standard neural network 

architecture featuring two hidden layers. (b) is depicted a streamlined version of the 

network, achieved by implementing dropout, where the crossed-out units represent 

those that have been randomly omitted during the training process. 

Our MS-CNN network is meticulously designed with multiple layers, comprising 

convolutional layers, batch normalization layers, ReLU activation layers, max pooling 

layers, fully connected layers, and a Softmax classification layer. The key parameter 

settings for each layer of its network structure are shown in Table 3.3. The network 

accepts input images of 100×100 pixels in color with three channels. The initial 

convolutional layer (Conv-1) employs a 2×2 kernel size with 16 kernels, a stride of 1, and 

padding of 1, yielding an output feature map of 101×101×16 pixels. This is immediately 

followed by a batch normalization layer (BatchNorm-1) and a ReLU activation layer 

(ReLU-1). The subsequent convolutional layer (Conv-2) utilizes a 3×3 kernel, increasing 

the number of kernels to 32, maintaining the same stride, resulting in a feature map of 

101×101×32 pixels. After passing through the max pooling layer (MaxPooling-1), the 

feature map size is halved to 50×50×32. 

The third convolutional layer (Conv-3) employs a 5×5 kernel, further increasing the 

kernel count to 64 to capture broader image features, with the output feature map size 

being 48×48×64 pixels. Another max pooling layer (MaxPooling-2) reduces the spatial 

dimensions, shrinking the feature map to 23×23×64 pixels. The fully connected layer 

(FullyConnected-1) then flattens the feature map and projects it into a 256-dimensional 
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space, followed by a batch normalization layer (BatchNorm-4) and a ReLU activation 

layer (ReLU-4). A Dropout layer with a probability of 0.5 randomly eliminates neurons 

to mitigate overfitting. The second fully connected layer (FullyConnected-2) maps the 

features to a four-dimensional space corresponding to the four categories of the 

classification problem. 

Table 3.3 Parameters of the MS-CNN network structure 

Layer Input Filter Stride Padding Output Learnable Parameters 

ImageInput 100×100×3 - - - 
100×100×

3 
- 0 

Conv-1 100×100×3 2×2 1 1 
101×101×

16 

Weights 

2×2×3×16 

Bias 1×1×16 

208 

BatchNorm-1 - - - - 
101×101×

16 

Offset 1×1×16 

Scale 1×1×16 
32 

ReLU-1 - - - - 
101×101×

16 
- 0 

Conv-2 101×101×16 3×3 1 1 
101×101×

32 

Weights 

3×3×16×32 

Bias 1×1×32 

4640 

BatchNorm-2 - - - - 
101×101×

32 

Offset 1×1×32 

Scale 1×1×32 
64 

ReLU-2 - - - - 
101×101×

32 
- 0 

MaxPooling-1 101×101×32 3×3 2 0 50×50×32 - 0 

Conv-3 50×50×32 5×5 1 1 48×48×64 

Weights 

5×5×32×64 

Bias 1×1×64 

51264 

BatchNorm-3 - - - - 48×48×64 
Offset 1×1×64 

Scale 1×1×64 
128 

ReLU-3 - - - - 48×48×64 - 0 

MaxPooling-2 48×48×64 3×3 2 0 23×23×64 - 0 

FullyConnect

ed-1 
23×23×64 - - - 1×1×256 

Weights 

256×33856 

Bias 256×1 

8667392 

BatchNorm-4 - - - - 1×1×256 
Offset 1×1×256 

Scale 1×1×256 
512 

ReLU-4 - - - - 1×1×256 - 0 

Dropout 1×1×256 - - - 1×1×256 - 0 

FullyConnect

ed-2 
1×1×256 - - - 1×1×4 

Weights 4×256 

Bias 4×1 
1028 

Softmax 1×1×4 - - - 1×1×4 - 0 

Classification - - - - 4 - 0 

Total 8,725,268 

Finally, the Softmax layer normalizes the output such that the values for each 

category represent a probability distribution, and the classification layer produces the 

final classification outcome. The entire network encompasses a substantial number of 
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learnable parameters, with approximately 8.67 million parameters in the FullyConnected-

1 layer and over 50,000 parameters in the Conv-3 layer. These parameters are optimized 

through backpropagation and gradient descent algorithms. 

This streamlined description consolidates the network's structure and functionality, 

emphasizing the flow from input through the series of layers to the final classification, 

and highlights the role of each layer in the process. 

3.5 Transfer Learning Models 

In the field of image recognition and classification research, transfer learning 

models play an essential role. They have not only advanced deep learning technology but 

also provided powerful tools for solving practical problems. Below are some widely 

recognized transfer learning models in academia and industry, along with their invention 

years: AlexNet (2012), VGGNet (2014), GoogLeNet (Inception-V1) (2014), ResNet 

(2015), Inception-V2/V3 (in 2015 and 2016, respectively), DenseNet (2016), the 

MobileNet series (MobileNet-V1 in 2017 and MobileNet-V2 in 2018), BERT (2018, 

mainly used for natural language processing but also applicable to image recognition 

tasks), and EfficientNet (2019). The successive introduction of these models represents 

significant milestones in the field of image recognition technology within deep learning, 

offering researchers and developers a diverse array of tools and technological options. 

In this study, we selected MobileNet-V2, Inception-V3, and ResNet-18 as our 

transfer learning models for three main reasons: Firstly, MobileNet-V2 (Gulzar, 2023) 

focuses on optimizing computational efficiency while maintaining performance. This 

model significantly reduces the model size and computational requirements through the 

use of depthwise separable convolutions, maintaining high recognition accuracy, and 

making it particularly suitable for applications with limited computational resources. 

Secondly, Inception-V3 and ResNet-18 have been extensively validated in a variety of 

image classification tasks, demonstrating their powerful capability in feature extraction. 

Additionally, the selected models show good adaptability, being able to quickly adapt to 

different datasets and task requirements. This allows them to quickly achieve high 

performance on new image classification problems during the transfer learning process. 

Choosing these models helps us compare the transfer learning capabilities of different 



 

74 

architectures, providing a comprehensive perspective for assessing the effects of transfer 

learning.  

Considering the limitations of hardware resources, the lightweight characteristics 

of MobileNet-V2 make it an ideal choice for deployment in resource-constrained 

environments, which is particularly important in practical applications. Lastly, the use of 

these models not only helps us explore new areas of transfer learning but also serves as a 

foundation for improving and innovating existing models, offering a certain degree of 

innovation. Taking into account the specific objectives of the research, available 

resources, expected application scenarios, and the specific needs of the research team, we 

believe that MobileNet-V2, Inception-V3, and ResNet-18 are appropriate choices for 

conducting transfer learning research. 

Moving forward, we will present an overview of the three transfer learning models 

that we have constructed: MS-MobileNet-V2, MS-Inception-V3, and MS-ResNet-18. 

3.5.1 MS-MobileNet-V2 

As depicted in Figure 3.10, the MS-MobileNet-V2 architecture is a transfer learning 

model specifically designed for the task of microseismic event waveform recognition, 

based on the pre-trained MobileNet-V2 model (Avola et al., 2022). This architecture 

leverages transfer learning techniques to successfully transfer the general feature 

extraction capabilities of MobileNet-V2, honed on image recognition tasks, to the 

identification of microseismic waveform data. Here are the specific steps implemented in 

the MS-MobileNet-V2 transfer learning model: 

1. Data Preprocessing: Initially, the raw microseismic time-series waveform 

data is converted into event waveform images (time-amplitude representation). This 

transformation aligns the data format with the model's input requirements. Subsequently, 

the waveform images are resized to 224×224 pixels to match the input layer dimensions 

of the MobileNet-V2 model.  

2. Transfer Learning Strategy: During model initialization, the pre-trained 

parameters of MobileNet-V2 are employed. This strategy enables the model to capitalize 

on the knowledge gained from large-scale image datasets like ImageNet (Krizhevsky et 

al., 2017), providing a foundation for feature extraction from microseismic waveform 

data. 
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3. Feature Extraction: The inverted residual blocks and linear bottleneck 

structures of MobileNet-V2 are utilized to extract features from the preprocessed 

waveform images. The design of these structures helps maintain the effectiveness of 

feature extraction while reducing computational complexity. 

 

Figure 3.10 Transfer learning model for microseismic event waveform identification 

and classification based on MobileNet-V2 (MS-MobileNet-V2). 

4. Classification Layer Adjustment: To cater to the specific classification task, 

the last three layers of the MobileNet-V2 model are replaced. This includes a fully 

connected layer, a softmax layer, and an output layer. The fully connected layer is 

parameterized to 4, corresponding to the four anticipated categories of event 

classification. 

 onv       ,      

 onv  epth ise

 onv  ro ect

 loc         

 loc   

 loc   

 loc   

 nput 

           

 ully connected

 o t a  utput   lasses 

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 loc   

 onv

 lo al  vg  ool

 onv    ,   e   

  ise    ,   e   

 onv    ,   inear

 dd

 nput

     loc   

 onv    ,   e   

  ise    ,  
 tride    ,  e   

 onv    ,   inear

 nput

 a   loc   

 
ep

laced
 layers



 

76 

5. Model Training and Evaluation: Finally, the model is trained using 

microseismic data from three mines. During training, validation and test sets are used to 

assess the model's performance. Evaluation metrics such as accuracy, recall, and F1 score 

are employed to provide a comprehensive view of the model's performance. 

Through this process, the MS-MobileNet-V2 model can efficiently recognize 

microseismic events, offering a novel technical approach for mine safety monitoring and 

disaster prediction. This model not only reduces reliance on a large amount of annotated 

data but also, due to its lightweight nature, is suitable for deployment in environments 

with limited computational resources (Bichri et al., 2023). 

3.5.2 MS-ResNet-18 

The MS-ResNet-18 model, a deep learning model for microseismic event waveform 

recognition and classification through transfer learning (Figure 3.11), is designed based 

on the residual network ResNet-18 developed by Microsoft Research (Zhao et al., 2022). 

It is optimized for the classification and identification tasks of microseismic signals. 

ResNet-18, a shallower network in the ResNet series, consists of 18 stacked residual 

blocks. These blocks effectively address the vanishing gradient problem during the 

training of deep networks by introducing skip connections, enabling the network to learn 

more complex functional mappings (Alinsaif et al., 2020). 
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Figure 3.11 Transfer learning model for microseismic event waveform identification 

and classification based on ResNet-18 (MS-ResNet-18). 

The MS-ResNet-18 model leverages the deep residual learning (He et al., 2015) 

framework of ResNet-18, capable of capturing deep features and patterns within 

microseismic waveform data. Utilizing transfer learning techniques, MS-ResNet-18 

inherits the pre-trained weights of ResNet-18 obtained from large-scale image recognition 

datasets. These weights encapsulate rich knowledge of visual features, which, when 

transferred to the task of recognizing microseismic waveform data, can significantly 

enhance the model's learning efficiency and performance on the new task. 

The implementation steps of MS-ResNet-18 also follow the standard transfer 

learning process. During the data preprocessing phase, the original microseismic 

waveform data is transformed into a format suitable for model input, including adjusting 
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data size and normalization. Subsequently, the pre-trained weights of ResNet-18 are 

loaded as the initial state of the network, and the network structure is appropriately fine-

tuned according to the characteristics of the microseismic waveform data. Then, the 

model's output layer is customized according to specific classification tasks, and the 

network weights are further optimized through the training process. Finally, the model's 

performance is evaluated on separate validation and test sets, and the model is optimized 

based on the evaluation results. 

Through transfer learning and fine-tuning, MS-ResNet-18 is expected to 

demonstrate good generalization and adaptability, capable of adjusting to different 

microseismic waveform datasets, providing an efficient and automated solution for 

microseismic monitoring in mines.  

MobileNet-V2 and ResNet-18 all use 224×224 images because this size provides a 

good balance between computational efficiency and sufficient detail for accurate feature 

extraction. It allows the models to perform well across various visual recognition tasks 

while keeping the processing time and memory usage manageable. Additionally, this 

image size is a standard benchmark in the field, enabling consistent comparison of model 

performance. 

3.5.3 MS-Inception-V3 

The MS-Inception-V3 transfer learning model (Figure 3.12 and Figure 3.13) is 

based on the Inception-V3 network developed by Google and is constructed for the 

classification and identification tasks of microseismic signals. This architecture adopts 

the intricate design of the Inception-V3 network (Wang et al., 2019), particularly its 

unique Inception modules, which can process features of different scales in parallel, 

thereby effectively extracting key information from microseismic waveform data. 

Through transfer learning, MS-Inception-V3 inherits the knowledge that Inception-V3 

has learned from large-scale image recognition datasets and applies it to the identification 

task of microseismic waveforms, significantly improving the model's training efficiency 

and performance for specific tasks. Additionally, MS-Inception-V3 can be fine-tuned to 

adapt to specific microseismic waveform datasets, demonstrating good generalization and 

adaptability (Lin et al., 2019). 
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Figure 3.12 Transfer learning model for microseismic event waveform identification 

and classification based on Inception-V3 (MS-Inception-V3). 

The implementation steps of MS- follow the standard transfer learning process. 

During the data preprocessing phase, the original microseismic waveform data is 

converted into an image format and size suitable for model input (299×299 pixels). The 

model was trained on the ImageNet dataset with this resolution, which ensures that the 

pre-trained weights are well-suited for images of this size. Subsequently, the pre-trained 

Inception-V3 model weights are loaded to initialize the network. The model's output layer 

is then customized to fit the specific classification task, and the network weights are 

further optimized through the training process. Finally, the model's performance is 

evaluated using separate validation and test sets, and the model is optimized based on the 

evaluation results. The MS-Inception-V3 architecture can be widely applied to automatic 

microseismic event classification, real-time mine monitoring and early warning, as well 

as geological structure analysis, providing an efficient and automated solution for the 

field of seismic monitoring. 
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Figure 3.13 Detailed structure of five inception models (a~e) in MS-Inception-V3. 

Based on existing research, Table 3.4 summarizes the key architectural parameters 

of the three transfer learning models, including the number of convolutional layers, the 

size and number of kernels, the stride, and the count of parameters. From the table, it can 

be seen that the MobileNet-V2 model has approximately 53 convolutional layers with a 

kernel size of 3×3, varying numbers of kernels across different layers, and a stride of 1 

for most layers, totaling about 3.47 million parameters. ResNet-18 consists of 18 
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convolutional layers, also with 3×3 kernel sizes, starting with 64 filters in the first layer, 

doubling in number with each residual block up to 512, with a parameter count of 

approximately 11.18 million. Inception-V3's convolutional layers involve multiple 

Inception modules of different scales, with varying numbers of kernels and strides within 

each module according to the design, primarily using 1×1, 3×3, and 5×5 kernels, and has 

a model parameter count of about 23.8 million. 

Table 3.4 Key architectural parameters of transfer learning models 

Model Number of 

Convolutional 

Layers 

Convolutional 

Kernel Size 

Number of 

Convolutional 

Kernels 

Stride Number of 

Parameters 

MobileNet-V2 About 53 

layers 

3×3 Varies by layer, 

adhering to a 

specific design 

philosophy 

Primarily 1 About 

3.47M 

ResNet-18 18 layers 3×3 Begins with 64, 

doubling with 

each layer 

progression 

2 for the first 

layer, 1 for 

subsequent 

layers 

About 

11.18M 

Inception-V3 About 48 

layers 

1×1, 3×3, 

5×5 

Differs between 

modules, tailored 

according to the 

architectural 

design 

Differs 

between 

modules 

About 

23.8M 

 otes  

•  he " u  er o   onvolutional  ernels"  or  o ile et    indicates variation across layers 

in accordance  ith its design principles. 

•  or  es et   , the nu  er o  convolutional  ernels initiates at    in the  irst layer and 

e ponentially increases  ith each successive layer. 

•  nception     eatures convolutional layers  ith varying  ernel si es   × ,  × , and  ×  , 

and  oth the nu  er o   ernels and stride are tailored to the speci ic require ents o  each 

 odule. 

3.6 Evaluation Metrics 

When evaluating the performance of machine learning models, it is crucial to use 

appropriate evaluation metrics. In order to comprehensively assess the performance and 

accuracy of our model, we have adopted a series of evaluation metrics including accuracy, 

precision, recall, F1 score, Kappa coefficient, and confusion matrix. These metrics 

quantify the accuracy, robustness, and generalization ability of the model, helping us 

objectively evaluate its performance in solving specific tasks. The following will provide 

a detailed description of each evaluation metric, including the rationale for its selection, 

calculation formula, and interpretation. 
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1. Accuracy 

Accuracy is one of the most intuitive evaluation metrics, measuring the overall 

correctness of the classification model's predictions (Tharwat, 2020). It represents the 

proportion of correctly classified samples among the total number of samples. The 

calculation Equation (3.23) is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.23) 

where TP represents true positives, the number of samples correctly predicted as positive; 

TN represents true negatives, the number of samples correctly predicted as negative; FP 

represents false positives, the number of samples incorrectly predicted as positive; FN 

represents false negatives, the number of samples incorrectly predicted as negative. A 

higher accuracy indicates a better overall predictive ability of the model. 

2. Precision 

Precision measures the proportion of true positive predictions out of all positive 

predictions made by the classifier (Vujovic, 2021). The calculation Equation (3.24) for 

precision is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.24) 

Precision helps us evaluate the rate of false alarms, i.e., the cases where negative samples 

are incorrectly predicted as positive. A higher precision implies fewer false positive 

predictions when classifying positive samples. 

3. Recall 

Recall measures the proportion of true positive predictions out of all actual positive 

samples (Powers, 2020). The calculation Equation (3.25) for the recall is as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.25) 

Recall helps us evaluate the rate of missed detections, i.e., the cases where positive 

samples are incorrectly predicted as negative. A higher recall implies capturing a larger 

proportion of actual positive samples. 



 

83 

4. F1-Score 

The F1-Score is the harmonic mean of precision and recall, providing a 

comprehensive measure of both precision and recall in classification models (Yacouby et 

al., 2020). The calculation Equation (3.26) for the F1-Score is as follows: 

𝐹1⁡𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.26) 

The F1-Score combines precision and recall, giving them equal weight. When both 

precision and recall are high, the F1-Score will also be high, indicating a balanced 

performance in predicting both positive and negative samples. 

5. Kappa coefficient 

The Kappa coefficient, also known as Cohen's Kappa, is used to measure the 

accuracy of classification models, particularly when evaluating the reliability and 

consistency of classification results (Cohen, 1960). It takes into account the effect of 

random agreement. The formula for calculating the Kappa coefficient is as follows 

(Equation (3.27)): 

{
 
 

 
 𝐾𝑎𝑝𝑝𝑎 =

𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

𝑃𝑜 =
∑ 𝑛𝑖𝑖𝑖

𝑁

𝑃𝑒 =∑ (
𝑛𝑖∙ ∙ 𝑛∙𝑖
𝑁2

)
𝑖

 (3.27) 

where 𝑃𝑜  is the observed agreement (i.e., the proportion of actual classification that 

matches the true classification), and 𝑃𝑒 is the expected agreement (i.e., the proportion of 

agreement expected by chance).  

Construct a confusion matrix (Contingency Table) with actual categories and 

predicted categories as dimensions.  

Calculate the observed agreement 𝑃𝑜, where 𝑛𝑖𝑖 is the element on the diagonal of 

the confusion matrix (representing the number of correctly classified samples). N is the 

total number of samples.  
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Calculate the expected agreement 𝑃𝑒, where 𝑛𝑖∙ is the total number of samples in the 𝑖-th 

row. 𝑛∙𝑖 is the total number of samples in the 𝑖-th column. 

Substitute 𝑃𝑜 and 𝑃𝑒 into the Kappa coefficient formula to calculate Kappa. 

6. Confusion matrix 

The confusion matrix is an intuitive tabular representation that shows the 

relationship between the classifier's predicted results and the true class labels, providing 

a visual display of the classifier's classification performance (Valero-Carreras et al., 

2023). Each cell in the confusion matrix represents the prediction results for a specific 

sample, including true positives, false positives, true negatives, and false negatives. 

In multi-class classification problems, the confusion matrix can be used to visualize 

the classifier's classification results and calculate metrics such as accuracy, recall, and F1 

score for each class. It provides detailed correspondence between the classifier's predicted 

results and the true class labels, helping evaluate the model's performance across different 

classes. 

For a four-class classification problem, the structure of the confusion matrix 

becomes more complex as it needs to account for the classification results of four different 

categories. The confusion matrix will be a 4×4 matrix, summarizing the model's correct 

and incorrect predictions, broken down by each class. Each cell represents a combination 

of actual and predicted categories. 

Assuming we have four categories: 1, 2, 3, and 4. The structure of the confusion 

matrix is as follows (Table 3.5): 

Table 3.5 The basic structure of a four-class confusion matrix 

Actual Class 

Predicted Class 
Actual Class 1 Actual Class 2 Actual Class 3 Actual Class 4 

Predicted Class 1 C11 C12 C13 C14 

Predicted Class 2 C21 C22 C23 C24 

Predicted Class 3 C31 C32 C33 C34 

Predicted Class 4 C41 C42 C43 C44 
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• Rows represent the predicted categories. 

• Columns represent the actual categories. 

• Each cell 𝐶𝑖𝑗 represents the number of instances where the actual category 

is j and the predicted category is i. 

➢ Explanation of the Confusion Matrix 

• Diagonal Elements (𝐶𝑖𝑗): 

• These elements represent the number of instances that were correctly 

classified. 

• For example, 𝐶11 indicates the number of instances correctly predicted as 

class 1. 

• Off-Diagonal Elements (𝐶𝑖𝑗 for 𝑖 ≠ 𝑗): 

• These elements represent the number of instances that were misclassified. 

• For example, 𝐶12 indicates the number of instances that actually belong to 

class 2 but were predicted as class 1. 

➢ Key Metrics Derived from the Confusion Matrix 

Several important metrics can be derived from the confusion matrix to evaluate the 

model's performance: 

• Accuracy: 

• Accuracy is the ratio of the number of correctly classified instances to the 

total number of instances. 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝐶𝑖𝑖
4
𝑖=1

∑ ∑ 𝐶𝑖𝑗
4
𝑗=1

4
𝑖=1

 

• Precision (for each class): 

• The precision of a class is the ratio of the number of instances correctly 

predicted as that class to the total number of instances predicted as that 

class. 

• For class i: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝐶𝑖𝑖

∑ 𝐶𝑖𝑗
4
𝑗=1

⁡(𝑖 = 1, 2, 3, 4) 
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• Recall (for each class): 

• The recall of a class is the ratio of the number of instances correctly 

predicted as that class to the total number of instances that actually belong 

to that class. 

• For class i: 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝐶𝑖𝑖

∑ 𝐶𝑗𝑖
4
𝑗=1

⁡(𝑖 = 1, 2, 3, 4) 

• F1-Score (for each class): 

• The F1-Score is the harmonic mean of precision and recall. 

• For class i: 𝐹1⁡𝑆𝑐𝑜𝑟𝑒𝑖 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 

To comprehensively evaluate the model's performance, perform similar 

calculations for each category. 

In conclusion, each evaluation metric has its specific objectives and application 

scenarios. Choosing appropriate evaluation metrics and conducting comprehensive 

analysis and interpretation will contribute to a thorough assessment of the performance 

and effectiveness of machine learning models. 

3.7  Summary 

This chapter provides an overview of the data and methodology used to achieve fast 

and accurate identification and classification of four types of microseismic monitoring 

events (microseisms, blasts, rock drilling, and noise) in mining environments. Firstly, by 

transforming raw waveform data into waveform graphs and utilizing expert knowledge 

and manual identification, sample databases of 6-channel microseismic event waveform 

graphs are established for mines A, B, and C. Subsequently, the theoretical knowledge 

and algorithm principles of using HOG-SML, convolutional neural networks, and transfer 

learning based on deep learning are introduced to explore the most suitable machine 

learning algorithms for microseismic signal identification and classification. 

To objectively evaluate the model's performance, extensive real data is used for 

training and testing, followed by a detailed explanation of the definition, selection 

rationale, and corresponding calculation formulas for each evaluation metric. By 
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comparing metrics such as accuracy, precision, recall, F1 score, and Kappa coefficient, 

the best-performing model is determined. 

The ultimate goal is to provide intelligent technological support for microseismic 

monitoring and promote the intelligent transformation and safe development of mining 

operations. 
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CHAPTER 4 

RESULTS 

4.1 Introduction 

This chapter presents the process and outcomes of experiments conducted using 

three common machine-learning techniques. Firstly, we utilize the HOG feature 

extraction method in conjunction with shallow machine learning classifiers to achieve 

automatic recognition and classification of microseismic event waveforms. This approach 

addresses the challenge of manually designing feature extraction in traditional machine 

learning methods and leverages the advantages of shallow machine learning algorithms, 

which require fewer computational resources and offer faster processing speeds. 

Secondly, we refine existing convolutional neural network structures to construct a simple 

CNN model, training it from scratch to obtain a model that demonstrates strong 

performance in both efficiency and accuracy. Thirdly, we make comprehensive use of 

existing image classification models and employ transfer learning techniques to achieve 

high-accuracy models. Through experimentation with these three methods, we conduct a 

comprehensive comparative analysis of the results, aiming to identify the optimal models 

and approaches. This will aid readers and fellow researchers in making informed and 

appropriate decisions. 

4.2  Experimental Environment 

This section will introduce the experimental environment and infrastructure of this 

study from both hardware and software perspectives. 

1. Hardware Infrastructure 

This study utilized a computer equipped with a graphics processing unit (GPU, 

NVIDIA GeForce GTX 1050 Ti) as the experimental platform. The processor operated 

at a base clock frequency of 2.5GHz, featuring 8 processing cores from the 
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high-performance Intel 11th generation Core i7 series, thus providing substantial 

computational power for the experiments. The computer was equipped with 16GB of 

memory and had a storage configuration consisting of a 500GB solid-state drive (SSD) 

and a 2TB hard disk drive (HDD), offering ample space for data storage and processing. 

2. Software System 

On the software side, Python was utilized for acoustic data processing and 

waveform graph conversion. Furthermore, MATLAB R2021b was employed to 

implement HOG feature extraction and perform training and testing of the classification 

models. Additionally, we used MATLAB's Deep Learning Toolbox to implement 

convolutional neural network (CNN) models and transfer learning models. MATLAB, a 

widely-used high-performance numerical computing software, is renowned for its 

extensive mathematical function library and robust plotting capabilities, supporting 

diverse applications such as data analysis, algorithm development, signal processing, 

image processing, and machine learning. These hardware and software configurations 

provided a reliable foundation for microseismic event waveform recognition and 

classification. 

4.3 Results of the HOG-SML Method 

The combination of histogram of oriented gradients and shallow machine learning 

(HOG-SML) algorithms was utilized. Initially, the HOG algorithm was employed to 

extract feature vectors from microseismic event waveforms, serving as inputs for the 

shallow learning models. Subsequently, linear classifiers, decision tree classifiers, KNN 

classifiers, Fisher discriminant classifiers, and SVM classifiers were constructed. 

4.3.1 K-fold Cross-Validation 

During the model training process, we adopted the five-fold cross-validation 

method to evaluate the model's performance and enhance its generalization ability. The 

basic principle involves dividing the training data into five mutually exclusive subsets, 

with four for model training and one for model validation. Each subset had the 

opportunity to act as the validation set, resulting in five sets of performance evaluations. 

Ultimately, the average of these five results was considered as the evaluation of the 

model's performance, providing more stable and reliable performance metrics. 
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The reason for selecting k = 5 over 7 or 10 was to balance efficiency and reliability. While 

using a higher number of folds could offer more precise performance evaluations, it 

would also escalate computational costs and time consumption. Five-fold cross-

validation is commonly regarded as a practical and effective choice of folds, maintaining 

relatively lower computational overhead while ensuring evaluation accuracy. 

Additionally, the balanced division of training and validation sets in five-fold cross-

validation aids in better assessing the model's generalization capability and stability. 

Therefore, in this study, we opted for five-fold cross-validation as the method for 

evaluating model performance. 

By employing five-fold cross-validation, the model underwent multiple rounds of 

training and validation on different training and validation sets. This helped in detecting 

potential overfitting, where good performance on one subset but poor performance on 

others may indicate overfitting issues. Multiple training and validation cycles on diverse 

data subsets contributed to a more comprehensive understanding of the model's 

adaptability to various data distributions. Consequently, this led to an enhancement in the 

model's generalization performance, making it more effective when dealing with new, 

unseen data. Through cross-validation, we were also able to optimize the model's 

hyperparameters. For instance, different hyperparameter combinations could be explored 

in each fold, and the model with the best performance on the validation set was chosen. 

This process assisted in identifying the optimal hyperparameter configuration, thereby 

improving the model's overall performance. Table 4.1 presents the performance results of 

five shallow machine learning models obtained through five-fold cross-validation on 

training datasets from Mines A, B, and C. This table provides a comprehensive evaluation 

of the generalization capabilities of each model across the different datasets. 

 

 

 

 

 



 

91 

Table 4.1 The results of five-fold cross-validation of shallow machine learning models 

on three datasets 

Dataset Model 
Validation accuracy 

fold_1 fold_2 fold_3 fold_4 fold_5 Average_val 

A 

SVM 95.62 95.43 96.79 96.11 95.52 95.89 

Linear Classifier 96.20 96.79 96.11 94.46 95.03 95.72 

Decision Tree 81.79 82.59 82.10 81.81 81.60 81.98 

KNN 88.90 89.20 89.69 89.59 91.72 89.82 

Fisher Discriminant 95.23 94.75 94.07 94.65 94.64 94.67 

B 

SVM 96.65 96.94 97.71 96.56 96.56 96.88 

Linear Classifier 95.60 97.23 96.85 96.46 97.04 96.64 

Decision Tree 91.30 90.26 91.02 92.35 91.59 91.30 

KNN 94.84 95.89 96.08 95.12 96.18 95.62 

Fisher Discriminant 97.42 96.94 96.94 97.42 95.89 96.92 

C 

SVM 96.89 96.25 96.14 96.55 96.85 96.54 

Linear Classifier 96.40 96.81 96.51 96.36 97.00 96.62 

Decision Tree 84.70 85.08 86.50 85.00 85.15 85.29 

KNN 93.03 92.24 91.94 92.24 93.21 92.53 

Fisher Discriminant 95.16 95.28 94.86 95.05 95.28 95.13 

From Table 4.1, it is evident that there are differences in the accuracy rates of each 

model after undergoing five rounds of training and validation. The SVM and Linear 

models have demonstrated higher validation accuracy and stability across all datasets, 

especially with the SVM achieving an average validation accuracy of 96.88% on dataset 

B. The Decision Tree model has relatively poorer performance on all datasets, with the 

lowest average validation accuracy. The KNN model shows an improvement on dataset 

B, but still falls below the SVM and Linear models overall. The Discriminant analysis 

shows exceptional stability on dataset B, but exhibits greater fluctuations on other 

datasets. In summary, the SVM and Linear models perform the most impressively on 

these datasets, while the Decision Tree model requires further optimization to enhance its 

performance. 

To evaluate the training efficiency of five shallow machine learning models across 

different datasets, we recorded the training time for each classification model, with the 

experimental results presented in Figure 4.1. The intuitive display of the bar chart reveals 

that the KNN classifier has the shortest training time, followed closely by the linear 

classifier. The decision tree and SVM have relatively longer training times, while the 

discriminant classifier has the longest training time among all models, particularly when 
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processing the large sample dataset C, where the time taken increases significantly. 

Across all datasets, the Linear model has demonstrated a faster training time, making it 

an ideal choice for scenarios requiring a quick response. The KNN model, due to the 

simplicity of its algorithm, also maintains a faster training speed across all datasets. These 

analytical results provide us with insights into the performance differences of different 

models on various datasets, helping us to select the appropriate model and optimize the 

training process to enhance the overall efficiency of machine learning projects. 

 

Figure 4.1 Training time of shallow learning models on three training sets. 

4.3.2 Testing Results 

Upon completing the training of classifiers, we conducted a final performance 

evaluation of the models using independent test sets. These test sets contained data that 

the model had not encountered previously, aiming to simulate new data scenarios that the 

model may face in real-world applications. This step is crucial for assessing the model's 

generalization capability. As mentioned earlier, we utilized metrics such as accuracy, 

precision, recall, F1 score, and Kappa coefficient to evaluate the model's performance on 

the test sets. Additionally, we employed confusion matrices to provide a more detailed 

classification presentation of the test results. The specific experimental results are as 

follows: Table 4.2 documents the accuracy and Kappa coefficients of these five classifiers 

on datasets A, B, and C. Figure 4.2 illustrates their testing durations on the three different 

test sets. 
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Table 4.2 Performance of shallow machine learning models on three mine test datasets 

Dataset Metrics 
Shallow machine learning models 

SVM Linear Tree KNN Discriminant 

A 
Accuracy (%) 97.12 96.65 82.94 91.2 94.55 

Kappa 0.961 0.954 0.767 0.880 0.925 

B 
Accuracy (%) 96.25 96.41 90.90 95.26 96.87 

Kappa 0.946 0.948 0.870 0.932 0.955 

C 
Accuracy (%) 96.79 97.21 86.68 92.17 95.68 

Kappa 0.956 0.961 0.816 0.891 0.940 

The analysis from Table 4.2 indicates that on Dataset A, the SVM model achieves 

the highest accuracy at 97.12%, demonstrating its effectiveness in making correct 

predictions. Additionally, the SVM model has the highest Kappa statistic of 0.961, 

indicating strong agreement between predicted and actual classifications. On Dataset B, 

the Discriminant model shows the highest scores for both accuracy and Kappa, with 96.87% 

and 0.955 respectively, signifying its superior performance on this dataset. For Dataset C, 

the Linear model outperforms others, with an accuracy of 97.21% and a Kappa of 0.961. 

In summary, the Linear and SVM models consistently exhibit high accuracy and 

Kappa values across all datasets, suggesting their robustness and reliability. The 

performance of the Tree model varies significantly, with lower accuracy and Kappa 

compared to other models. The KNN and Discriminant models show improved 

performance on Datasets B and C. These findings can inform model selection based on 

the specific characteristics of different datasets, positioning the Linear and SVM models 

as strong contenders due to their consistently high performance. 

 

Figure 4.2 The testing time of shallow learning models on three testing sets. 
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The bar chart 4.2 illustrates the test times in seconds for five shallow machine 

learning models  across three mining test datasets. The Tree model exhibits the shortest 

test times, being less than 1 millisecond for datasets A and B, and only 3 milliseconds for 

dataset C. In contrast, KNN has the longest test times, with an exceptionally high duration 

of 400 seconds on dataset C, significantly outpacing the other models. Both Linear and 

SVM models maintain low test times across all datasets, indicating high testing efficiency. 

The Discriminant model shows low test times for datasets A and B, but experiences an 

increase on dataset C. The data highlights the notable variance in testing efficiency among 

different models when applied to various datasets. 

Furthermore, we used confusion matrices to meticulously demonstrate the 

classification performance of each model across different event categories, as depicted in 

Figure 4.3， Figure 4.4, and Figure 4.5. 

For a clear analysis and comparison, the F1-Scores are calculated and displayed at 

the bottom of the confusion matrix. As shown in Figure 4.3, on the test dataset from Mine 

A, the SVM classifier demonstrates the best overall performance with the highest 

precision, recall, and F1-Scores for each class. Notably, it achieves the best classification 

for noise events (F1-Score of 98.6%), followed closely by microseismic events (F1-Score 

of 97.1%), with drilling and blasting events showing similar performance. The Linear 

classifier performs second best, with high precision across all four events. The 

discriminant classifier ranks third, particularly effective in noise event identification. The 

KNN classifier shows average results. Lastly, the decision tree classifier performs the 

weakest, with recall and precision rates around 80% for each event class, indicating the 

need for further improvement. 

On the test dataset from Mine B, the sample size for blast events is the smallest (70), 

approximately one-sixth of the quantity of other event categories. As shown in Figure 4.4, 

the discriminant classifier performs the best overall, particularly in identifying 

microseismic events, with an F1 score of 98.3%. In terms of identifying blast events, the 

discriminant classifier also excels, with a recall rate and F1 score of 87.1% and 90.4%, 

respectively. The linear classifier has the highest precision for blast event identification 

(96.5%), but its recall rate is only 78.6%. For drilling events, both the discriminant and 

linear classifiers demonstrate high identification accuracy. The SVM model's 
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performance in microseismic event identification is second only to the discriminant 

classifier. The KNN classifier has the highest precision for microseismic event 

identification, at 97.8%, but its recall rate is lower than that of the discriminant classifier 

and SVM. Although the decision tree classifier performs better on test set B than on test 

set A, with an accuracy rate of 90.9%, it is still the weakest among the five models. 

On the test dataset from Mine C, the linear classifier demonstrates the best overall 

performance, achieving the highest F1-scores for noise, drilling, microseismic, and 

blasting events. The SVM classifier ranks second, followed by the discriminant classifier 

in third place. The KNN classifier holds the fourth position. Lastly, the decision tree 

classifier, which often confuses blasting events with microseismic events, shows a 

precision rate of only 70.9% for blasting event identification and has relatively low 

accuracy for the other three event types. 
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Figure 4.3 The confusion matrices of shallow machine learning models on test set A. 
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Figure 4.4 The confusion matrices of shallow machine learning models on test set B. 
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Figure 4.5 The confusion matrices of shallow machine learning models on test set C. 

After a comprehensive analysis of the test datasets from Mines A, B, and C, we 

conclude that different datasets, due to their varying feature complexities and 

distributions of event counts, have a significant impact on the performance of 

classification models. Overall, the Linear and SVM classifiers perform well in most cases 
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due to their stability and high accuracy, especially suitable for datasets with uniform 

feature distribution and high-dimensional data. The Discriminant classifier demonstrates 

advantages when dealing with datasets with imbalanced samples. The KNN classifier, 

though easy to implement, may be affected by noisy data when the feature dimension is 

high. The Decision Tree, while highly interpretable, is prone to overfitting with complex 

datasets. Therefore, choosing the most appropriate model requires a comprehensive 

consideration of data characteristics, task requirements, and the specific strengths of the 

models, along with performance evaluation through methods such as cross-validation to 

ensure that the selected model can achieve optimal classification performance in specific 

application scenarios. 

4.4  Results of MS-CNN Model 

4.4.1 The Impact of Hyperparameters on Model Performance 

During the training process of CNNs, the setting of hyperparameters typically 

involves selecting appropriate initialization methods to promote a reasonable distribution 

of network weights, determining the learning rate and its decay strategy to balance 

training speed and prevent oscillation, setting batch size to balance computational 

efficiency and memory usage, configuring optimizers to suit specific problems and data 

characteristics, and adjusting network architecture-related parameters (such as 

convolutional kernel size, number of layers, and connection methods) through 

experiments to improve the model's generalization ability and performance. In addition, 

hyperparameter settings must consider avoiding overfitting, ensuring the model's 

performance on unseen data, and using cross-validation and independent test sets to verify 

the effectiveness of hyperparameter choices. 

The selection of hyperparameters has a significant impact on the results of machine 

learning models. The optimizer plays a crucial role in the training process, adjusting the 

model's parameters to minimize the loss function. The choice of optimizer determines the 

direction and step size of parameter updates. Commonly used optimizers include Gradient 

Descent, SGDM (Stochastic Gradient Descent with Momentum), Adam (Kingma et al., 

2014), RMSprop (Root Mean Square Propagation), etc. The initial learning rate is the 

step size of the optimization algorithm at the start, determining the degree of parameter 

updates based on the gradient of the loss function. The learning rate typically starts with 
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a value that promotes the reduction of training loss and is then adjusted according to the 

observed training performance. An excessively high learning rate may lead to an 

overshoot, while an overly low learning rate can result in a slow training process. 

The maximum number of training epochs refers to the number of times the model 

completely uses the training dataset for training. An epoch means that the model has 

viewed all training samples once. Generally, more epochs can improve model 

performance but also increase the risk of overfitting. The appropriate number of iterations 

depends on the complexity of the model and the size of the dataset. Batch size refers to 

the number of samples in the model's training set used for backpropagation in a single 

weight update. A smaller mini-batch size can provide better generalization, while a larger 

batch size can speed up training but may lead to instability during the training process. 

The optimal batch size is usually determined based on the model's structure and the 

performance of the hardware used. In this experiment, recognition accuracy was chosen 

as the main metric for evaluating the performance of the image recognition model. The 

higher the recognition accuracy on the test set, the better the model's performance is. 

To visually demonstrate the impact of different hyperparameter settings on the 

performance of the MS-CNN model, this study used dataset A as a benchmark and 

systematically compared the combined effects of different optimizers (SGDM and Adam), 

learning rates (0.1, 0.001, 0.0001), batch sizes (8, 16, 32), and the number of iterations (8, 

10, 20). The results of these experiments are detailed in Table 4.3, highlighting the 

influence of hyperparameter tuning on model performance. 

Based on the data analysis from Table 4.3, several key observations can be made: 

1. Choice of Optimizer: The Adam optimizer generally demonstrates higher 

accuracy compared to SGDM, likely due to the superiority of the Adam algorithm in 

automatically adjusting the learning rate. 

2. Sensitivity to Learning Rate: The learning rate significantly impacts model 

performance. For instance, a decrease in the learning rate from 0.001 to 0.0001 (row NO.1 

vs. NO.9) results in a drop in accuracy, indicating that a smaller learning rate is not always 

better. At the same time, a higher learning rate (such as 0.1, rows NO.24 & 25) leads to a 

significant performance decline, showing that an excessively large learning rate can 

impair the model's convergence and accuracy. 
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Table 4.3 Performance comparison of the MS-CNN model on dataset A under different 

hyperparameter settings 

NO. Optimizer Learning rate Epochs Batch size Accuracy (%) 

1 sgdm 0.001 8 32 96.73 

2 sgdm 0.001 8 16 97.20 

3 sgdm 0.001 8 8 96.88 

4 sgdm 0.001 10 8 96.34 

5 sgdm 0.001 10 16 96.73 

6 sgdm 0.001 10 32 96.34 

7 sgdm 0.001 20 32 96.88 

8 sgdm 0.0001 20 32 96.03 

9 sgdm 0.0001 8 32 94.78 

10 sgdm 0.0001 10 32 95.33 

11 sgdm 0.01 8 32 95.25 

12 sgdm 0.01 10 32 96.65 

13 sgdm 0.01 20 32 96.26 

14 adam 0.001 8 32 97.43 

15 adam 0.001 8 16 97.20 

16 adam 0.001 10 32 97.20 

17 adam 0.001 8 8 96.81 

18 adam 0.001 10 8 97.43 

19 adam 0.001 10 16 97.98 

20 adam 0.0001 8 32 96.81 

21 adam 0.0001 10 32 96.50 

22 adam 0.01 8 32 96.18 

23 adam 0.01 10 32 96.26 

24 adam 0.1 8 32 86.37 

25 adam 0.1 10 32 89.95 

3. Balance Between Iterations and Batch Size: The number of iterations and batch 

size need to be coordinated to achieve optimal performance. For example, with 10 

iterations, a smaller batch size (such as 16, row NO.15) usually yields higher accuracy 

compared to a larger batch size (such as 32, row NO.16). Moreover, an excessive number 

of iterations (such as 20, row NO.13) does not bring additional performance 

improvements and may lead to overfitting. 

4. Consideration of Hardware Resources: Hardware resource limitations must be 

taken into account when selecting hyperparameters. A larger batch size, while 
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accelerating training speed, may exceed the processing capacity of the hardware, resulting 

in reduced training efficiency. 

In summary, the rational selection of hyperparameters is crucial for model 

performance. In practical applications, it is necessary to fine-tune and optimize based on 

specific tasks and hardware conditions to find the optimal combination of 

hyperparameters that maximizes model performance. 

4.4.2 Hyperparameter Optimization 

In the field of deep learning, the tuning of hyperparameters has a decisive impact 

on the model's generalization ability and training efficiency. This study aims to explore 

the optimal combination of hyperparameters through a systematic approach to ensure 

model performance while minimizing the time required for training. In this study, we 

used the control variable method to optimize hyperparameters, with the aim of achieving 

the best model performance. Specific hyperparameter settings can be found in Table 4.4. 

Table 4.4 Hyperparameter settings of the MS-CNN model during training 

Hyperparameter Value Description 

Optimizer Adam Use the Adam optimizer for gradient descent optimization. 

Initial Learning Rate 0.001 The learning rate at the start of training. 

Max Epochs 8 The maximum number of epochs for training the model. 

Mini-Batch Size 32 The number of samples used in each gradient descent update. 

Data Shuffle 
Every-

epoch 

Randomly shuffle the data once at the beginning of each 

training epoch. 

Validation 

Frequency 
10 

Perform a performance evaluation on the validation set after 

every specified number of mini-batches. 

Firstly, we fixed the learning rate, number of iterations, and batch size, and 

conducted an exhaustive comparison of different optimization algorithms. Through in-

depth analysis of the model's loss and accuracy on the training and validation sets, we 

found that the Adam optimizer demonstrated superior performance across multiple 

evaluation metrics. Therefore, we selected Adam as the optimization algorithm for this 

study. Subsequently, keeping the batch size and number of iterations constant, we finely 

adjusted the learning rate and found that when the learning rate was set to 0.001, the 

model's accuracy on the test set significantly increased while maintaining a low training 
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loss. To prevent model overfitting, we further optimized the number of iterations and 

found that when set to 8, the model achieved a lower and stable training loss while 

maintaining a high validation accuracy. Finally, we optimized the batch size and found 

that with other hyperparameters held constant, when the batch size was set to 32, the 

model's accuracy on the validation set exceeded 96%, and the training loss was also kept 

at a low level. Through this series of hyperparameter adjustments, we successfully 

enhanced the model's performance, laying a solid foundation for subsequent research. 

4.4.3 Training Process 

1. Changes in Loss and Accuracy During the Training Process 

In this study, we conducted exhaustive training experiments on datasets from three 

different mines (named A, B, and C) using a five-fold cross-validation method. Through 

visualization, we presented the changes in loss and accuracy on the training and validation 

sets as the training cycles and iteration numbers increased, as shown in Figure 4.6. In the 

figure, the left y-axis represents loss, and the right y-axis represents accuracy. To maintain 

a reasonable length and avoid repetition, we only displayed the training process diagram 

of the model that performed optimally on the validation set. 

Evaluate model training effectiveness by visualizing changes in loss and accuracy, 

providing an intuitive understanding of the model's learning curve and training process 

effectiveness. Detecting overfitting involves noticing a continuous decrease in loss and 

increase in accuracy on the training set, while the validation set shows increasing loss and 

decreasing accuracy. Underfitting is identified when both training and validation sets 

exhibit high loss and low accuracy, indicating a need for increased model complexity or 

extended training epochs. 

To optimize the model, observe the training curves and adjust parameters like 

learning rate and batch size as needed. This proactive approach helps refine the training 

process and enhances overall model performance. 
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(a) Training process of MS-CNN on dataset A 

 
(b) Training process of MS-CNN on dataset B 

 
(c) Training process of MS-CNN on dataset C 

Figure 4.6 Training process of the MS-CNN model on different mine datasets. 

                                

         

 

   

   

   

   

 

   

   

   

   

 

  
  

 

  

  

  

  

  

  

  

  

  

   

  
  

  
  
   

 

                           

      

                        

               

                       

              

                    

                                

         

 

   

   

   

   

 

   

   

   

   

 

  
  

 

  

  

  

  

  

  

  

  

  

   

  
  

  
  
   

 

                           

     

                        

               

                       

              

                    

                    

         

 

   

   

   

   

 

   

   

   

   

 

  
  

 

  

  

  

  

  

  

  

  

  

   

  
  

  
  
   

 
                           

      

                        

               

                       

              

                    



 

105 

➢ Loss Change Plot: 

• Meaning: The loss function measures the difference between the model's 

predictions and the true labels. Common loss functions include cross-entropy loss 

and mean squared error. 

• Purpose: Monitoring the loss function's changes helps us understand the model's 

learning progress. At the beginning of training, the loss value is usually high, and 

it should gradually decrease as the number of iterations increases. 

• Significance: By observing the loss change plot, we can determine if the model 

is learning effectively. If the loss value does not decrease significantly or 

fluctuates greatly, it may be necessary to adjust the learning rate, optimizer, or 

model architecture. 

➢ Accuracy Change Plot: 

• Meaning: Accuracy measures the proportion of correctly predicted samples to the 

total number of samples. For classification tasks, accuracy is a direct performance 

metric. 

• Purpose: Tracking the changes in accuracy can evaluate the model's performance 

improvement on the training and validation sets. Typically, accuracy is low at the 

start of training and should gradually increase with more iterations. 

• Significance: By analyzing the accuracy change plot, we can assess the model's 

training effectiveness. If accuracy significantly improves on the training set but 

performs poorly on the validation set, it may indicate overfitting, necessitating the 

use of regularization, data augmentation, or adjusting the model's complexity. 

These diagrams are important tools for understanding the dynamics of model 

learning and assessing its generalization ability. They not only record the adjustment and 

optimization trajectory of the model at various iterative stages but also lay a solid 

foundation for subsequent model optimization work and in-depth data analysis. 

Taking Figure 4.6(a) as an example, we analyzed the training process of the MS-

CNN model. The figure detailed the smoothed accuracy and loss curves during the 

training process, as well as the accuracy and loss values obtained on the validation set. 

Overall, it demonstrated the training progress of the MS-CNN model on dataset A, 
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capturing the dynamic changes and results of accuracy and loss on both the training and 

validation sets. The training process was efficiently completed in 7 minutes, comprising 

8 epochs, with each epoch containing 128 iterations, totaling 1,024 iterations. Validation 

was performed every 10 iterations. The training was conducted on a single GPU, with the 

learning rate maintained at a constant level of 0.001. From the numerical values in the 

figure, after 40 iterations, the model's accuracy basically stabilized at and above 90%, and 

the loss was maintained at and below 0.23. As the number of iterations increased, the 

model's accuracy and loss gradually stabilized and ultimately remained at their optimal 

values. The final validation accuracy of the model was 96.98%. 

2. Five-Fold Cross-Validation Experimental Results 

Additionally, we have thoroughly documented and analyzed the training efficiency 

and validation accuracy of the MS-CNN model on different datasets. The experimental 

results can be found in Table 4.5. 

Table 4.5 MS-CNN model training results with five-fold cross-validation 

Results Validation accuracy (%) Training time (s) 

Fold_No. A B C A B C 

1 96.98 96.94 97.86 429.32 441.16 2012.36 

2 96.89 97.23 98.09 496.89 481.22 2068.55 

3 96.21 97.33 97.34 467.07 443.66 2056.21 

4 96.89 97.80 97.30 416.71 406.00 2026.12 

5 96.49 97.71 96.51 497.48 444.76 2138.19 

Average 96.69 97.40 97.42 461.49 443.36 2060.29 

Through meticulous data analysis, we observed that the MS-CNN model 

demonstrated the highest validation accuracy on dataset C, reaching a peak of 98%. 

Considering the variance in sample sizes across datasets A, B, and C, which are 5138, 

5232, and 13334 samples respectively, dataset C contains approximately 2.6 times the 

number of samples compared to dataset A, while dataset B has 94 more samples than A, 

accounting for about 39% of the sample size of dataset C. This gradient difference in 

sample sizes directly influenced the training duration: datasets A and B had similar 

training times, both under 8 minutes, whereas dataset C required a longer duration, 

approximately 35 minutes. 
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Based on the correlation analysis between sample size and training duration, it is 

reasonable to infer that although dataset C has 2.5 times the samples of A, its training 

time is nearly 4.3 times that of A. Despite dataset B having only 1.8% more samples than 

A, its training time is comparable to A, and in some cases, even shorter. It should be 

emphasized that the proportional relationship between training time and sample size we 

propose is an approximate inference based on the current data and not a strict 

mathematical ratio. In practical applications, training duration is influenced by a 

multitude of factors, including but not limited to the complexity of the samples, the 

complexity of the model architecture, and hardware performance. This comprehensive 

consideration is crucial for understanding the efficiency and accuracy during the model 

training process and provides valuable insights for future model optimization and 

algorithmic improvements. 

4.4.4 Testing Results 

Table 4.6 presents the performance of the MS-CNN model on three different test 

sets (A, B, C). Across all test sets, the model's test accuracy exceeded 97%, with an 

average accuracy of 97.58%, indicating the MS-CNN model's excellent performance on 

all datasets. The Kappa statistic, a key measure of classification consistency, has a mean 

value of 0.968, nearly approaching perfect consistency, further confirming the model's 

high reliability in classification tasks. In terms of test time, we observed that test set B 

had the shortest test time of 3.28 seconds, while test set C had the longest test time of 

9.07 seconds, indicating a significant correlation between test time and the scale and 

complexity of the datasets. Despite variations in test times across different datasets, 

overall, the MS-CNN model not only shows excellent performance in classification 

accuracy but also achieves a high level of consistency. 

Table 4.6 Performance of the MS-CNN model on different test sets 

Dataset Test-accuracy (%) Kappa Test-time (s) 

A 97.43 0.966 3.78 

B 97.71 0.970 3.28 

C 97.60 0.968 9.07 

Figure 4.7 provides a detailed illustration of the MS-CNN model's performance on 

specific classification tasks across different test sets through confusion matrices.  
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Figure 4.7 Confusion matrices of the MS-CNN model on three test datasets. 

In the confusion matrix for test set A, the MS-CNN model demonstrated good 

classification accuracy. Specifically, the Blast category achieved a correct identification 

rate of 97.5%, the highest among the three datasets, although approximately 2.4% of 

samples were incorrectly classified as microseismic events (MS). The identification 

precision for the Drilling category was 96.7%, with 3.3% of samples misclassified as 

noise or drilling events. The identification precision for microseismic events was 97%, 

with 3% of samples misclassified as blasting events. The Noise category had the highest 

correct identification rate at 98.5%, indicating the model's high accuracy in noise 

recognition, although a small number of samples may have been misclassified as drilling 

or microseismic events. 

In the confusion matrix for test set B, the MS-CNN model also showed high 

classification performance. The precision for the Blast category reached 95.2%, with 4.6% 
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of samples incorrectly classified as microseismic events. The Drilling category had a 

correct identification rate of 96.9%, with 3.1% of samples incorrectly categorized as noise 

events. The precision for microseismic events  was 97.3%, despite a certain proportion of 

samples being prone to misclassification as blasting events. The Noise category 

performed the best with a 99.3% precision, further proving the model's effectiveness in 

differentiating noise from other categories such as microseismic events. 

The confusion matrix for test set C shows that the model's overall performance on 

this dataset is equally remarkable. Specifically, the correct identification rate for the Blast 

category was 95.3%, slightly higher than test set B, although most misclassified samples 

were primarily misclassified as microseismic events. The Drilling category had a very 

high correct identification rate of 99.2%, with only 0.8% of samples misclassified as noise 

events. The precision for microseismic events was 97.2%, and the precision for the Noise 

category was 98.4%. These results indicate that the MS-CNN model also demonstrated 

strong capabilities in distinguishing between drilling, noise, and other categories when 

processing test set C. Overall, the results of these confusion matrices not only validate the 

MS-CNN model's classification capabilities across all test sets but also highlight its 

generalization performance in different environments. 

4.5  Results of the Transfer Learning method 

4.5.1 Hyperparameter Settings 

Based on our experience with hyperparameter settings in the MS-CNN model, we 

compared the training effects of using the SGDM and Adam optimizers. After careful 

consideration, we selected SGDM for its momentum component, which helps the model 

converge more quickly and stabilizes the training process by reducing oscillations. Setting 

the initial learning rate to 0.001 provided a good balance for the model to start learning 

without making large jumps in the weight space, which can be crucial in fine-tuning a 

model that has already been pre-trained. 

Max epochs to 8 was a strategic choice to ensure that the model does not overfit the 

training data. This number of epochs allows the model sufficient time to adjust to the 

specifics of the new task without excessive training that could lead to poor generalization. 

Choosing a mini-batch size of 32 was a compromise between computational efficiency 

and the model's ability to generalize from the training data. This size is large enough to 
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provide a good estimate of the gradient for the optimization while keeping the noise level 

that comes with smaller batch sizes, which can be beneficial for training stability. 

Shuffling the data every epoch ensures that the model does not develop any bias 

towards the order of training samples, promoting a more robust learning process. Lastly, 

setting a validation frequency of every 10 iterations allows for a regular assessment of the 

model's performance on unseen data, which is crucial for making informed decisions 

about when to stop training to avoid overfitting. 

These hyperparameter settings collectively form a training strategy that is not only 

efficient and stable but also highly adaptable to the nuances of the task at hand. By 

carefully tuning these hyperparameters, we aimed to enhance the model's ability to 

generalize well to new data while maintaining high accuracy and reducing reliance on 

extensive manual tuning. 

4.5.2 Training Process 

In this study, we selected datasets from three different mines (labeled A, B, and C) 

for model training and conducted an in-depth analysis of the performance changes during 

the training process. Using dual-axis charts, we clearly demonstrated the evolution of loss 

and accuracy on the training and validation sets for the three transfer learning models: 

MS-MobileNet-V2, MS-ResNet-18, and MS-Inception-V3, as the training cycles and 

iteration numbers increased. Figures 4.8, 4.9, and 4.10 correspond to the performance 

changes of the aforementioned models, respectively. These charts reveal the optimization 

trajectory of the models during the iterative process, laying the foundation for subsequent 

model improvements and in-depth data analysis. 

Taking the results in Figure 4.8 as an example for analysis, the MS-MobileNet-V2 

model showed consistency in the training process across the three different datasets, 

including the dynamic changes and results of accuracy and loss on the training and 

validation sets. It can be seen from the figure that after completing a training cycle on 

dataset A, the model's validation accuracy stabilized above 90%. On datasets B and C, 

the model's convergence speed was faster. As the number of iterations increased, the 

model's accuracy and loss gradually stabilized and ultimately remained at optimal values. 

The final validation accuracy of the model reached above 98%. 
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(a) Training process of the MS-MobileNet-V2 model on dataset A 

 
(b) Training process of the MS-MobileNet-V2 model on dataset B 

 
(c) Training process of the MS-MobileNet-V2 model on dataset C 

Figure 4.8 Training process of the MS-MobileNet-V2 model on three datasets. 
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(a) Training process of the MS-ResNet-18 model on dataset A 

 
(b) Training process of the MS-ResNet-18 model on dataset B 

 
(c) Training process of the MS-ResNet-18 model on dataset C 

Figure 4.9 Training process of the MS-ResNet-18 model on three datasets. 
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(a) Training process of the MS-Inception-V3 model on dataset A 

 
(b) Training process of the MS-Inception-V3 model on dataset B 

 
(c) Training process of the MS-Inception-V3 model on dataset C 

Figure 4.10 Training process of the MS-Inception-V3 model on three datasets. 
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Through these charts, we not only recorded the gradual improvement of model 

performance but also provided a key perspective for assessing the model's generalization 

ability. The consistency of the model's performance across different datasets further 

confirms its generalization capability. Looking at the changes in the loss function: in the 

initial stage of training, the loss is high because the transfer learning model needs to adapt 

to the recognition and classification tasks of microseismic event waveform diagrams. In 

the middle stage, as training progresses, the loss gradually decreases, indicating that the 

model is learning and recognizing the features of microseismic event waveform diagrams. 

In the later stage, the loss function tends to stabilize, indicating that the model has adapted 

well to the target task. 

Looking at the improvement in accuracy: in the early training period, the accuracy 

is relatively low because the model has not yet adapted to the new task. As training 

progresses, the accuracy significantly improves, indicating that the model's performance 

is continuously improving. In the later stages of training, the accuracy reaches a higher 

level and tends to stabilize. Through detailed performance analysis, we can gain a deeper 

understanding of the model's learning dynamics, ensuring its effectiveness and robustness 

in practical applications. 

4.5.3 Testing Results 

Table 4.7 provides a detailed account of how three models—MS-MobileNet-V2, MS-

ResNet18, and MS-Inception-V3—fare in terms of accuracy, training time, test time, and 

Kappa statistics on datasets A, B, and C. 

Table 4.7 Performance of transfer learning models on different datasets 

 odel  ataset  rain ti e s   est ti e s   ccuracy  %   appa 

    o ile et    

      .     .     .    .    

      .     .     .    .    

      .     .     .    .    

    es et   

  909 93 5 78   .    .    

     .    .     .    .    

      .     .     .    .    

    nception    

      .     .   98 71 0 983 

      .     .     .    .    

       .     .     .    .    
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The MS-MobileNet-V2 model shows a high level of accuracy, consistently scoring 

above 98% across all datasets. It has a slight decrease in accuracy from dataset A to B, 

followed by a marginal increase in dataset C. The Kappa statistic for this model is also 

very high, indicating excellent agreement between predicted and actual labels, with 

minimal prediction errors. 

In contrast, the MS-ResNet18 model demonstrates a slightly lower but still 

impressive accuracy, with the shortest training times among the three models. This 

suggests that MS-ResNet18 is not only accurate but also efficient in terms of 

computational resources required for training, making it a strong candidate for real-world 

applications where time and computational power are critical. 

MS-Inception-V3, while achieving the highest accuracy on dataset A, shows a 

significant increase in training time on dataset C, which is considerably longer than the 

other two models. Despite this, it maintains a high accuracy and Kappa statistic, 

indicating robust performance. However, the longer training time may be a consideration 

when choosing this model for tasks where training speed is a concern. 

In summary, all three models exhibit strong performance with high accuracy and 

Kappa values. MS-MobileNet-V2 stands out for its consistency and high Kappa statistic, 

MS-ResNet18 for its training efficiency, and MS-Inception-V3 for its top accuracy on 

dataset A, albeit with a longer training time on dataset C. These models offer valuable 

insights and a solid foundation for further exploration and application in the realm of 

transfer learning for image classification. 

⚫ Results of confusion matrices 

We utilized confusion matrices to elaborate on the relationships between the real 

labels and model-predicted labels for transfer learning models across different categories. 

Figure 4.10 presents the confusion matrix for MS-MobileNet-V2 on three distinct test 

sets (A, B, C), while Figures 4.11 and 4.12 correspond to the confusion matrices for MS-

ResNet-18 and MS-Inception-V3 models, respectively. In these matrices, rows represent 

model-predicted class labels, and columns represent actual class labels. The values on the 

diagonal reflect the correct prediction count for each class, directly influencing the 

model's classification performance. 
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Figure 4.11 Confusion matrix of the MS-MobileNet-V2 model on various test datasets. 

Taking the confusion matrix of MS-MobileNet-V2 on test set A (Figure 4.11(a)) as 

an example for analysis, we observed the highest precision for the Noise event (99.3%), 

showcasing the model's excellent performance in noise event recognition, with 273 

samples correctly classified and only 3 samples misclassified. The precision for Drilling 

events was 99%, while for MS events, it was 98.1%. In contrast, the precision for Blast 

events was relatively lower at 97%, primarily due to the similarity between microseismic 

and blasting events, leading to potential confusion in the model's differentiation. 

By comparing and analyzing the confusion matrices across the three test sets, we 

can explore the model's performance across different datasets. Overall, the MS-

MobileNet-V2 model demonstrates excellent classification performance across all three 

datasets, particularly excelling in noise event recognition with a 99% precision rate across 

all datasets, indicating a high level of recognition capability for this category. For the core 
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category of microseismic events, the model achieves a precision rate of 98% across all 

datasets, further validating its robustness in key categories. 

 

Figure 4.12 Confusion matrix of the MS-ResNet-18 model on various test datasets. 

Upon a comprehensive analysis of the performance of the MS-ResNet-18 model 

across different test sets (Figure 4.12), we observed consistently good performance in 

classifying various categories, despite minor category confusion. For instance, in test set 

A, the precision rates for Blast and Drilling events were both 98.1%, while for MS and 

Noise events, they were 98.2%. In test set B, the precision rate for Blast events was 

slightly lower at 93.8%, with Drilling and MS events at 97.4% and 97.5%, respectively, 

and Noise events reaching 98.3%. In test set C, Blast events had a precision rate of 95.2%, 

while Drilling, MS, and Noise events exhibited higher precision rates of 99.8%, 97.8%, 

and 99.2%, respectively. These results indicate that, despite minor confusion in certain 

categories, the ResNet-18 model maintains a high overall classification accuracy, 

particularly excelling in recognizing Noise and Drilling events. 

Confusion matrix of ResNet-18 on test set A Precision Confusion matrix of ResNet-18 on test set B Precision 
 

Blast 

Drilling 

MS 

Noise 

Recall 

Blast 

Drilling 

MS 

Noise 

Recall 

F1-Score   97.8% 97.8% 98.3% 98.6% 

Blast Drilling MS Noise 

Target class 

(a) 

Confusion matrix of ResNet-18 on test set C 

Blast 

Drilling 

MS 

Noise 

 

 

 

 

 

Precision 

F1-Score   89.6% 97.8% 98.3% 97.9% 

Blast Drilling MS Noise 

Target class 

(b) 

 

Recall 

 

F1-Score   95.1% 99.4% 97.9% 99.5% 

Blast Drilling MS Noise 

Target class 

(c) 

 

 

Accuracy 

 

 

Accuracy 

 

 

Accuracy 

O
u

tp
u

t 
cl

as
s 

O
u

tp
u

t 
cl

as
s 

O
u

tp
u

t 
cl

as
s 

356 

27.7% 

0 

0.0% 

6 

0.5% 

1 

0.1% 

98.1% 

1.9% 

1 

0.1% 

203 

15.8% 

1 

0.1% 

2 

0.2% 

98.1% 

1.9% 

8 

0.6% 

0 

0.0% 

428 

33.3% 

0 

0.0% 

98.2% 

1.8% 

0 

0.0% 

5 

0.4% 

0 

0.0% 

273 

21.3% 

98.2% 

1.8% 

97.5% 

2.5% 

97.6% 

2.4% 

98.4% 

1.6% 

98.9% 

1.1% 

98.1% 

1.9% 

 

60 

4.6% 

0 

0.0% 

4 

0.3% 

0 

0.0% 

93.8% 

6.3% 

0 

0.0% 

405 

31.0% 

0 

0.0% 

11 

0.8% 

97.4% 

2.6% 

10 

0.8% 

0 

0.0% 

396 

30.3% 

0 

0.0% 

97.5% 

2.5% 

0 

0.0% 

7 

0.5% 

0 

0.0% 

415 

31.7% 

98.3% 

1.7% 

85.7% 

14.3% 

98.3% 

1.7% 

99.0% 

1.0% 

97.4% 

2.6% 

97.6% 

2.4% 

 

538 

16.1% 

0 

0.0% 

27 

0.8% 

0 

0.0% 

95.2% 

4.8% 

0 

0.0% 

645 

19.4% 

0 

0.0% 

1 

0.0% 

99.8% 

0.2% 

27 

0.8% 

1 

0.0% 

1262 

37.9% 

0 

0.0% 

97.8% 

2.2% 

1 

0.0% 

6 

0.2% 

0 

0.0% 

825 

24.8% 

99.2% 

0.8% 

95.1% 

4.9% 

98.9% 

1.1% 

97.9% 

2.1% 

99.9% 

0.1% 

98.1% 

1.9% 

 



 

118 

 

Figure 4.13 Confusion matrix of the MS-Inception-V3 model on various test datasets. 

The confusion matrix results for the MS-Inception-V3 model across different test 

sets (Figure 4.13) also demonstrate high classification accuracy, especially in 

distinguishing between Drilling and Noise events. For Blast events, the model achieved 

precision rates of 99.4% and 93.2% in test sets A and C, respectively, but dropped to 88.9% 

in test set B. The precision rates for MS events were 97.5%, 98.5%, and 98.8% in test sets 

A, B, and C, respectively. Despite minor category misclassifications, overall, the 

Inception-V3 model maintains high classification performance across different test sets, 

displaying good generalization capabilities and robustness. 

In conclusion, the overall performance of the transfer learning models across the 

three test sets is satisfactory. Despite some category confusion, the models demonstrate 

high precision in identifying key event categories. Future research efforts could focus on 

reducing confusion between categories to enhance the models' classification accuracy and 

reliability. 
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4.6  Summary 

Considering the feature complexity and event distribution of the three datasets, 

along with the overall performance of the five shallow machine learning classification 

models, we can conclude that no single model is universally applicable; each has its own 

strengths and limitations. Selecting the appropriate model involves considering the 

characteristics of the dataset, the requirements of the classification task, and the 

performance of the model. In practical applications, it may be necessary to use methods 

such as cross-validation to assess the performance of different models, thereby making 

the most suitable choice. Additionally, model tuning and feature engineering are crucial 

for enhancing classification performance. 

Compared to HOG combined with shallow machine learning models, CNNs offer 

the advantage of automatically learning complex feature representations from data. With 

their multi-layer architecture, CNNs can capture a hierarchy of features—from simple to 

complex—which makes them highly effective for processing high-dimensional data such 

as images. Moreover, CNNs facilitate end-to-end learning, directly mapping input data to 

classification outcomes, thereby simplifying the model-building process. 

In the task of identifying and classifying microseismic events, transfer learning 

models have demonstrated significant performance. Specifically, the Inception-V3 model 

exhibited the highest recognition accuracy (98.71%), closely followed by the MobileNet-

V2 model (98.26%). Notably, the ResNet-18 model maintained high recognition accuracy 

(98.13%) while also possessing significant recognition efficiency advantages, making it 

particularly useful in applications requiring rapid response.  

Considering all metrics, the advantages of Inception-V3 and MobileNet-V2 in 

recognition accuracy, along with the balance achieved by ResNet-18 between efficiency 

and accuracy, provide robust technical support for the automatic detection and 

classification of microseismic events. The performance of these models not only validates 

the potential of transfer learning in practical applications but also offers valuable insights 

for future research and applications. 

Proper selection of hyperparameters is crucial for the performance of deep learning 

models. In practice, it is necessary to meticulously tune and optimize hyperparameters 
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based on specific tasks and hardware conditions to achieve the best combination and 

maximize model performance.  
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CHAPTER 5 

DISCUSSIONS 

5.1 Introduction 

In this chapter, we have conducted an in-depth analysis of the key findings from the 

research on intelligent identification and classification of microseismic events, and 

discussed the significance of these results at both the theoretical and practical levels. The 

chapter begins with an overview of the main outcomes of microseismic event 

identification, reiterates the performance metrics of the classification models, and 

provides an in-depth explanation of the factors contributing to the model performance. 

Furthermore, this chapter engages in a comprehensive discussion of the machine 

learning techniques employed, including their strengths and limitations, as well as the 

specific impact of data preprocessing, feature selection, and model selection on the results. 

In terms of methodology, the chapter evaluates the effectiveness and reliability of the 

research methods and discusses the rationality of the experimental design and data 

analysis approaches. At the same time, we honestly analyze the main limitations and 

challenges encountered during the research process and discuss the potential impact of 

these limitations on the research findings and conclusions. 

Finally, based on these limitations, we propose directions for future research aimed 

at further improving model performance and expanding its application scope, thereby 

laying the foundation for the future development of intelligent identification and 

classification technology for microseismic events. 

5.2  Analysis of Results 

Based on the experimental results in Chapter 4, our research yielded the following 

key findings: (1) The pattern recognition approach using HOG features extracted from 

waveform images, combined with shallow machine learning methods, demonstrated  
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promising results. Specifically, we utilized five common classifiers (SVM, Linear, 

Decision Tree, KNN, and Fisher Discriminant). Notably, the SVM classifier 

outperformed others using dataset A, achieving an accuracy of 97.12% and a Kappa 

statistic of 0.961. (2) We also implemented a convolutional neural network model, which 

surpassed the HOG-SVM method in both accuracy and robustness. Our MS-CNN model 

excelled with an accuracy of 97.43% and a Kappa statistic of 0.966 on dataset A. (3) 

Lastly, employing transfer learning techniques, we built target models (MS-MobileNet-

V2, MS-ResNet-18, and MS-Inception-V3) for microseismic event recognition and 

classification tasks based on pre-trained deep learning models, resulting in further 

enhancements. Among them, the MS-Inception-V3 model achieved the highest accuracy 

of 98.71% on dataset A. 

5.2.1 Analysis of Training Time Differences 

The training time of different models is influenced by factors such as model 

complexity and optimization algorithms. Among the five shallow machine learning 

models compared, the discriminative models and SVM models have longer training times. 

This is primarily because they require numerous iterations and optimization steps to 

determine the optimal decision boundary or hyperplane. The decision tree model has the 

next longest training time, likely due to its need for feature selection, tree construction, 

and handling a large amount of data partitioning and node optimization tasks. In contrast, 

the linear model benefits from its straightforward classification mechanism, resulting in 

a lighter computational load and shorter training time. The KNN model has the shortest 

training time because it only involves storing training samples and classifying based on 

distance, lacking complex training steps. 

Compared to shallow machine learning models, deep learning models based on 

convolutional neural networks require a large number of iterations and optimizations to 

find the best parameters, and their training time is closely related to the chosen 

hyperparameters, including the optimizer, learning rate, training epochs, and batch size. 

With specific hyperparameter configurations, the average training time of the MS-CNN 

model we built is about 10 times that of the SVM model. 

For transfer learning models, due to their complex network structures and the large 

number of parameters involved, their training time is longer than the MS-CNN model. 
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Although transfer learning uses pre-trained models to reduce the training burden, it still 

requires data preprocessing, network parameter fine-tuning, and hyperparameter 

adjustment for specific tasks, all of which require additional time. Moreover, deep 

learning models typically rely on powerful computational resources, and if resources are 

limited, they will also increase training time. Therefore, when using DNN for transfer 

learning, it is necessary to consider the complexity of the model, available computational 

resources, and training strategies to improve training efficiency. 

The above analysis helps us understand the trade-offs in the training efficiency of 

different models and provides guidance for choosing the appropriate model. 

5.2.2 Analysis of Testing Time Differences 

Testing time is primarily influenced by the computational complexity required for 

model predictions and the number of samples. Among the five shallow machine learning 

models compared, the KNN model has the longest testing time because it needs to 

calculate the distance between each test sample and all training samples, and then identify 

the nearest neighbors. This computationally intensive process results in longer testing 

times with large training datasets. In contrast, the decision tree model performs the best 

in terms of testing time as it relies on pre-established decision boundaries for predictions, 

involving minimal computation. The SVM and linear models also demonstrate short 

testing times, approaching real-time computational capabilities. The Fisher discriminant 

model has relatively longer testing times due to more complex linear operations involved 

compared to the SVM and linear models. 

For transfer learning models based on deep neural networks, testing time is closely 

related to the complexity of the network structure and the number of parameters. ResNet-

18 shows performance close to or even superior to the discriminant model in testing due 

to its streamlined network structure and a smaller number of parameters. This indicates 

that network efficiency and optimization play a key role in fast inference. 

MobileNet-V2, though optimized for mobile and edge computing environments, 

may have its unique lightweight design, such as depthwise separable convolutions, 

resulting in testing times approximately twice that of ResNet-18. This difference 

emphasizes the impact of architectural choices on testing efficiency. 
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Inception-V3 has a more complex network structure and more parameters, making its 

testing time relatively longer. However, compared to the KNN model, Inception-V3's 

testing time is still within an acceptable range. This suggests that despite model 

complexity, proper optimization and computational resource management can still 

achieve reasonable testing speeds. 

The MS-CNN model we built is superior in testing efficiency compared to the three 

aforementioned transfer learning models, likely due to its balanced network design and 

effective use of computational resources. However, compared to models with lower 

computational demands such as decision trees, SVM, and linear models, there is still room 

for improvement in the testing efficiency of CNN models. This suggests that although 

CNN models have advantages in feature learning capabilities, further model 

simplification and acceleration strategies may be needed in resource-constrained 

environments. 

In summary, the differences in testing times of machine learning models can be 

attributed to the complexity of the network structure, the number of parameters, and the 

demand for computational resources. Understanding these factors is crucial for selecting 

models suitable for specific application scenarios and guides us on how to improve testing 

efficiency through model optimization and hardware acceleration. 

5.2.3 Analysis of Model Performance Differences 

1. Analysis of Model Performance Variations on the Same Dataset 

In dataset A, microseismic events are the most prevalent, accounting for 34% of the 

total, followed by blasting events at 28%, noise events at 22%, and drilling events the 

least with only 16%. Although there is an imbalance in the quantity of events, this 

distribution is representative of the actual data collection in most mines. Therefore, we 

selected dataset A to analyze the performance differences among various models. 

Among the five shallow learning models, the SVM model performed the best, with 

an identification accuracy of 97.12% and a Kappa coefficient of 0.961. The SVM model 

stood out due to its ability to find the optimal hyperplane for decision boundaries, 

effectively handling high-dimensional space issues; the use of kernel tricks to deal with 

nonlinear problems without explicit mapping; robustness to outliers and noise, focusing 

only on support vectors that affect the decision boundary; and enhancing generalization 



 

125 

ability by maximizing the margin. Moreover, as a mature algorithm, SVM has a broad 

research base and community support, allowing it to perform well in multi-class 

classification problems. 

Our MS-CNN model further improved upon the SVM, increasing the accuracy by 

0.31 percentage points and the Kappa coefficient by 0.005. The CNN model is superior 

to SVM because its deep architecture can automatically learn hierarchical features 

directly from raw data, thereby enhancing representational and classification accuracy. 

The three transfer learning models all demonstrated excellent performance, with 

identification accuracies all above 98% and Kappa coefficients above 0.975. Their high 

performance is mainly due to the use of pre-trained weights on large-scale datasets (such 

as ImageNet), which have learned rich feature representations and have been further 

adapted to the microseismic event identification and classification tasks through fine-

tuning. As a result, they can leverage rich feature representations and make highly 

accurate predictions. In particular, the Inception-V3 model performed the best among all 

models, with an identification accuracy of 98.71% and a Kappa coefficient of 0.983. This 

achievement is attributed to Inception-V3's efficient architectural design, including 

parallel convolutional branches and spatial aggregation, which balance the integration of 

features at different scales, as well as the possible application of optimized 

hyperparameters and advanced regularization techniques, all of which contribute to 

improving the model's performance and generalization ability. 

In summary, the model performance analysis on dataset A shows that while shallow 

learning models like SVM show robustness, deep learning methods, especially CNN and 

transfer learning models, offer significant improvements in accuracy and reliability, 

highlighting their great potential for advanced event identification and classification in 

mining applications. 

2. Analysis of Model Performance Variations on Different Datasets 

To evaluate the generalizability and stability of the models, in addition to the dataset 

from Mine A, we have also included datasets from Mines B and C. Dataset B has a similar 

total number of samples to A (B has 118 more samples than A), with noise events 

accounting for the largest proportion, followed by drilling and microseismic events, and 

the fewest blasting events. The proportion of these four types of events from largest to 
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smallest is approximately: 32%, 32%, 31%, and 5%. Dataset C has the largest total 

number of samples (greater than the sum of datasets A and B), with microseismic events 

being the most frequent (about 39%), noise events second (about 24%), blasting events 

third (about 20%), and the fewest drilling events (about 17%). 

Dataset A serves as the core of our experiment, providing a representative sample 

set and establishing a benchmark for model training and validation. Dataset B is designed 

to assess the stability of the models when faced with class distribution imbalances, which 

is crucial for common challenges in practical applications. Dataset C is used to explore 

the potential impact of data volume on model performance and its generalization ability, 

which is particularly critical for large-scale datasets. Through these monitoring datasets 

from three mines, we can comprehensively evaluate the performance of the models under 

different conditions, ensuring their effectiveness and reliability in diverse application 

scenarios. 

When analyzing the performance of shallow learning models on datasets A, B, and 

C, we found that the SVM and Linear models demonstrated similar and outstanding 

overall performance. This may be attributed to their effectiveness in finding optimal 

decision boundaries in high-dimensional feature spaces and their good adaptation to the 

characteristics of the datasets. In contrast, the Discriminant model also performed well 

but was slightly inferior to the SVM and Linear models, possibly due to differences in 

model complexity or generalization ability. The performance of KNN and Decision Tree 

models fluctuated significantly, with lower accuracy and consistency, possibly due to 

their higher sensitivity to dataset size, class imbalance, noise sensitivity, or parameter 

settings. These factors indicate that while the SVM and Linear models perform robustly 

on these datasets, other models may require further adjustment and optimization to 

improve their performance and generalization ability on specific datasets. 

The MS-CNN model outperformed the best shallow learning model, SVM, on all 

three datasets, possibly because it leveraged the deep architecture of convolutional neural 

networks to automatically extract complex features from the data, especially when 

dealing with data that has spatial correlations or high-dimensional structures. 

Additionally, the MS-CNN model may have better adapted to the diversity and 

complexity of the datasets through its strong generalization ability and effective 
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regularization techniques, thus maintaining a very high level of identification accuracy 

and Kappa coefficients. 

The three transfer learning models performed well on all datasets, but MobileNet-

V2, due to its lightweight architecture, showed particularly stable 98% accuracy on all 

three datasets, while ResNet-18 and Inception-V3 experienced a slight decrease in 

accuracy on dataset B. This may be due to the uneven class distribution in dataset B, 

which negatively affects models sensitive to class imbalance, while MobileNet-V2 may 

be more robust to such imbalances. 

Analysis of the classification models for four types of events based on precision, 

recall, and F1 score indicates that noise events and drilling events, with their distinct 

waveform characteristics and high recognizability, tend to be better identified across 

various classification models. Next in line are microseismic events, while blasting events, 

which share many similar features with microseismic events, are more prone to 

misclassification, leading to lower precision, recall, and F1 scores. 

In dataset A, despite the proportion of samples for noise events and drilling events 

being less than that for blasting and microseismic events, the identification effect for both 

is still very good. Due to the larger number of microseismic event samples, its 

identification effect is better than that of blasting events. Particularly in dataset B, the 

identification effect for microseismic events is the best, but because there are too few 

samples for blasting events, the insufficient sample size leads to inadequate training of 

the model on this category, resulting in a lower identification accuracy for blasting events 

and a slight decrease in overall model performance. 

In dataset C, although the sample size for noise events and drilling events is not as 

large as for microseismic events, their identification effects are better than that of 

microseismic events. This may be related to the test sample size reaching more than 500, 

while the sample size for blasting events is less than 500. The increased likelihood of 

misclassifying blasting events as microseismic events thus reduces the precision, recall, 

and F1 scores for microseismic events. 

Overall, on the A, B, and C mining datasets, the SVM model in shallow learning, 

the MS-CNN model, and the transfer learning models have all demonstrated good 

performance across multiple evaluation metrics. Different models exhibit some variation 
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in the identification effect for different types of events, allowing us to choose the 

appropriate model for classification based on specific task requirements. 

5.3  Comparison with Existing Work 

To demonstrate the strengths of our research methodology, this study conducted a 

thorough comparison of the results with existing research in the field. Based on dataset 

A, we trained and tested the following models: the CNN model proposed in reference 

[55], the transfer learning model AlexNet from reference [108], and the transfer learning-

based DNN models, including GoogLeNet and ResNet-50, as presented in reference [53]. 

These comparisons not only validate the effectiveness of our approach but also highlight 

its relative standing in the current research landscape. 

Table 5.1 presents a performance comparison between shallow learning models, 

CNN models, and transfer learning-based DNN models with existing research methods 

on dataset A. Among the shallow machine learning methods, we selected the best-

performing model, HOG-SVM, as a representative. Since training and testing times, 

accuracy, and Kappa coefficients can comprehensively reflect the efficiency and accuracy 

of the models, this section focuses on comparing these four key evaluation metrics.  

To emphasize the main indicators and simplify the analysis, this section does not 

delve into a detailed comparison of single-class evaluation metrics such as precision, 

recall, and F1-score, allowing readers to more directly grasp the performance differences 

between models. 

Table 5.1 Comparative experimental results of existing research methods and the 

method of this study 

Model Accuracy (%) Kappa Training time (s) Testing time (s) 

CNN [55] 94.5 0.926 139 3.33 

AlexNet [108] 95.33 0.938 714.25 4.08 

GoogLeNet [53] 97.43 0.966 1020.99 6.64 

ResNet-50 [53] 97.74 0.970 2612.67 11.65 

HOG-SVM 97.12 0.961 47.47 0.29 

MS-CNN 97.43 0.966 461.49 3.78 

ResNet-18 98.13 0.975 909.93 5.78 

MobileNet-V2 98.21 0.976 1630.74 10.28 

Inception-V3 98.71 0.983 8702.44 17.39 
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The experimental results indicate that the Inception-V3 model achieves the highest 

accuracy (98.71%) and Kappa coefficient (0.983), demonstrating its superior 

performance in classification tasks with high consistency and accuracy. The MobileNet-

V2 and ResNet-18 follow closely with accuracies of 98.21% and 98.13%, respectively, 

and also exhibit high Kappa coefficients, indicating good generalization capabilities. 

The HOG-SVM model shows a significant efficiency advantage, with the shortest 

training and testing times, making it highly suitable for applications requiring rapid 

response. In contrast, the Inception-V3 model has the longest training and testing times, 

which may affect its application in real-time systems. 

The MS-CNN model matches GoogLeNet in terms of accuracy and Kappa 

coefficient but has shorter training and testing times, showing a better performance 

balance. Although MobileNet-V2 has slightly lower accuracy and Kappa coefficient 

compared to Inception-V3, its significantly reduced training and testing times suggest a 

clear advantage in speed and efficiency. 

The models proposed in this study, including HOG-SVM, MS-CNN, MS-ResNet-

18, MS-MobileNet-V2, and MS-Inception-V3, are competitive with the models in 

existing research in terms of accuracy and Kappa coefficient, and have improved training 

and testing times. 

Overall, the analysis of Table 5.1 emphasizes the trade-offs to consider when 

selecting a model. If the application scenario demands high prediction speed, HOG-SVM 

may be the most appropriate choice. For applications that pursue the highest accuracy and 

can tolerate longer training times, the Inception-V3 and MobileNet-V2 models may be 

more favored. The models proposed in this study, especially MS-CNN, ResNet-18, and 

MobileNet-V2, show competitiveness in accuracy, Kappa coefficient, training, and 

testing times, offering a variety of choices for specific needs. 

5.4  Analysis of the Advantages of This Study 

5.4.1 Advantages of HOG-Shallow Machine Learning Method 

To overcome the limitations of traditional manual identification of microseismic 

events, we have integrated existing research to propose an image recognition and 

classification model based on computer vision. To address the issue of relying on manual 
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experience for feature extraction, we employed the HOG method to automatically extract 

features from microseismic waveform images, which were then input into commonly 

used classifiers. To select the appropriate classifier, we constructed and compared five 

models. 

The experimental results demonstrate that the Shallow Machine Learning (SML) 

approach combined with HOG is feasible. These five models (HOG-SVM, HOG-Linear, 

HOG-Tree, HOG-KNN, HOG-Discriminant) have achieved satisfactory performance 

across different mining datasets. In terms of overall evaluation metrics—accuracy and 

Kappa coefficient—the SVM classifier performed the best, exhibiting strong stability. 

Regarding single-class evaluation metrics—precision, recall, and F1 score—the SVM 

model outperformed others across all four event categories.  

Taking dataset A as an example, the SVM model showed high accuracy in 

identifying noise and microseismic events, with F1 scores of 0.986 and 0.971, 

respectively. However, in terms of training and testing time, the Linear classifier had the 

highest computational efficiency, at 4.52 seconds and 0.11 seconds, respectively. 

On dataset C, the Linear classifier displayed the highest accuracy and consistency. 

The SVM classifier also performed well in most cases, especially on dataset B, where its 

performance in microseismic event identification was second only to the Discriminant 

classifier, highlighting its robust capability in handling high-dimensional data. The 

Discriminant classifier showed the best performance when dealing with dataset B, which 

had an imbalanced sample size. Although the KNN classifier is simple and intuitive, its 

performance on certain datasets was not outstanding, particularly susceptible to noise 

influence when the feature dimension is high. The Decision Tree classifier performed 

well on simple datasets but was prone to overfitting on complex datasets, leading to a 

decrease in performance (Curram et al., 1994). 

Overall, combining HOG with shallow machine learning methods for microseismic 

event recognition and classification offers multiple advantages. Firstly, the HOG 

technique effectively extracts crucial features such as edges and textures from waveform 

images, aiding in capturing key information about microseismic events and enhancing 

classification accuracy. Secondly, the low dimensionality of features extracted by HOG 

reduces the complexity of the feature space, leading to faster model training and improved 
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prediction efficiency. Additionally, HOG features exhibit a certain level of robustness to 

variations in lighting, rotation, and scaling, ensuring stable performance in microseismic 

event recognition and classification tasks across different environments.  

By combining with shallow machine learning methods like SVM and linear 

classifiers, rapid classifier construction is achievable, particularly excelling on small-

scale datasets. Moreover, this approach is characterized by strong interpretability, 

assisting researchers in understanding the decision-making processes of the model and 

providing valuable insights for further optimization and enhancement.  

In summary, leveraging HOG in conjunction with shallow machine learning 

methods provides an effective, efficient, and interpretable approach for microseismic 

event recognition and classification, offering convenience and practicality in 

microseismic research. 

5.4.2 Advantages of CNN Method 

The convolutional neural network model has multiple advantages in the recognition 

and classification of microseismic events (Liu et al., 2021). Firstly, CNN possesses strong 

feature learning capabilities, utilizing layered convolution and pooling operations to 

automatically learn high-level features from data without the need for manual feature 

design, effectively capturing complex patterns and key features within microseismic 

event data. Secondly, the CNN structure can effectively preserve spatial information, 

particularly suitable for processing data with spatial structures like images and waveform 

data, aiding in accurately distinguishing different categories of microseismic events. 

Additionally, CNN exhibits a certain degree of invariance and generalization to handle 

data variations such as translation, scaling, and rotation, enhancing the model's 

adaptability.  

Through multi-layer network structures, CNN can learn abstract feature 

representations from data, thereby improving classification accuracy (Liu et al., 2021). 

Most importantly, CNN excels when working with large-scale datasets, demonstrating 

high recognition accuracy and stability, making it suitable for complex microseismic 

event identification tasks, providing a robust and efficient tool for microseismic research. 

In comparison to the HOG-SML method, CNN offers advantages such as strong 

feature learning capabilities, preservation of spatial information, adaptability to data 
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variations, and deep feature learning. However, CNN may require more computational 

resources, lack interpretability, have risks of overfitting, and necessitate a substantial 

amount of labeled data for training. Despite CNN's outstanding performance in complex 

pattern recognition and feature extraction, it faces challenges like high computational 

costs, poor model interpretability, and risks of overfitting. When selecting the appropriate 

method, a comprehensive consideration of specific application requirements and 

available resources is essential. 

5.4.3 Advantages of Transfer Learning Method 

Transfer learning models offer multiple advantages in the recognition and 

classification of microseismic events (Jin et al., 2024). Firstly, by leveraging pre-trained 

model parameters on large-scale datasets, transfer learning accelerates the learning 

process on microseismic event datasets, enhancing model performance and generalization 

capability. Secondly, in scenarios with limited data, transfer learning demonstrates higher 

sample efficiency, effectively utilizing the knowledge from pre-trained models to 

improve the accuracy of microseismic event classification. Rapid convergence is also a 

benefit of transfer learning, as models have learned universal features, resulting in quicker 

training processes on microseismic event data, thereby saving time and resources. 

Moreover, transfer learning models exhibit strong adaptability, flexibly adjusting 

to the characteristics of different microseismic event datasets, enhancing generalization 

to new data and increasing model adaptability and stability (Xie et al., 2024). Importantly, 

transfer learning helps address the issue of data sparsity in microseismic event datasets 

by transferring learned features to compensate for missing data, effectively enhancing 

classification performance. These advantages make transfer learning models a powerful 

tool for handling microseismic event recognition and classification tasks, providing 

crucial support for research and practical applications. 

In the task of microseismic event recognition and classification, the HOG-SML 

method stands out for its high computational efficiency and strong interpretability. 

Through simple feature extraction and fast computation, HOG can quickly extract 

features on small-scale datasets (Han et al., 2020). Additionally, shallow machine 

learning methods like SVM possess strong interpretability, aiding in understanding the 

model's workings. However, the feature representation capability of HOG may be limited, 
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potentially failing to capture complex data patterns, and restricting its application in 

challenging tasks.  

On the other hand, the CNN method demonstrates robust feature learning 

capabilities and adaptability, automatically learning high-level features and handling data 

with spatial structures, thereby enhancing classification accuracy. However, CNN models 

require substantial computational resources and data support, with training processes 

being time-consuming, and their complex structures lacking interpretability, making their 

decision-making processes challenging to understand (Papadimitroulas et al., 2021). 

Furthermore, transfer learning methods leverage pre-trained model parameters to 

accelerate the training process, enhancing model performance and generalization, 

particularly showing higher sample efficiency with limited data. However, transfer 

learning models may need adaptation to specific microseismic event datasets, facing 

challenges in domain adaptation, and may perform poorly in cases of data mismatch or 

overfitting, requiring careful handling. In conclusion, for microseismic event recognition 

and classification tasks, selecting the appropriate method requires a comprehensive 

consideration of their strengths and limitations, aligning with specific task requirements 

and available resources to achieve optimal recognition and classification outcomes. 

5.5  Summary 

In summary, the HOG-shallow machine learning method excels in computational 

efficiency and interpretability, but is limited in feature representation capability; the CNN 

method shines in feature learning and adaptability, yet demands significant computational 

resources; while the transfer learning method offers advantages in parameter transfer and 

sample efficiency, caution is needed regarding domain adaptability and risks of 

overfitting. When selecting the appropriate method, it is essential to consider specific task 

requirements, data characteristics, and available resources.



 

134 

CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

6.1  Summary of the Study  

This study aims to enhance the sample quality, recognition efficiency, and accuracy 

of microseismic event data through machine learning methods. Meticulously selected 

microseismic monitoring data collected on-site from three mines in China underwent 

thorough preprocessing to eliminate irrelevant and anomalous data. By transforming the 

raw waveform data into six-channel event waveform images and meticulously annotating 

them under the strict guidance of domain experts, we obtained an image dataset covering 

four event categories: microseismic events, blasts, rock drilling, and noise, ensuring the 

reliability of training data and evaluation samples. 

To address the key research objectives and questions, we proposed the following 

solutions: 

1. To automate the process of identifying microseismic signals, alleviate the 

burden of manual analysis, and enhance recognition efficiency, we adopted a strategy that 

combines HOG features with shallow machine learning. 

2. To further improve the efficiency and accuracy of identification and 

classification, we introduced convolutional neural networks and developed the optimized 

model, MS-CNN. 

3. To enhance the model's generalization and robustness in recognizing 

microseismic event waveform images, we employed a transfer learning approach based 

on DNN, encompassing advanced models such as ResNet-18, MobileNet-V2, and 

Inception-V3. 

Through a comprehensive evaluation using overall performance metrics 

(such as training and testing time, accuracy, Kappa coefficient) and single classification 

metrics (precision, recall, and F1 score), we conducted a thorough assessment of model
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performance and compared it with other methods in the current research field. The 

evaluation results indicate that the microseismic event recognition and classification 

models proposed in this study exhibit outstanding performance in terms of recognition 

accuracy, classification efficiency, and generalization capabilities. 

⚫ Summary of main research findings: 

1. In this study, the HOG algorithm was employed to automatically extract local 

gradient orientation histograms of images as features, and five classifiers were 

constructed: SVM, Linear, Decision Tree, KNN, and Fisher Discriminant. These models 

were trained and tested using microseismic monitoring datasets from three mines. 

Experimental results showed that the HOG-SVM model performed the best, achieving a 

classification accuracy of over 97% on dataset A with a testing time of only 0.29 seconds. 

This confirms that combining HOG with shallow machine learning methods can ensure 

high accuracy and recognition efficiency without increasing model complexity or 

processing time, enabling the automation of microseismic signal identification. 

2. By introducing CNN and applying optimization techniques such as regularization 

and dropout, the MS-CNN model developed in our study demonstrated outstanding 

performance. On dataset A, the testing time of the MS-CNN model was approximately 

3.78 seconds, with a recognition accuracy of 97.43%, representing an improvement of 

about 3 percentage points compared to existing CNN models in research. 

3. Utilizing transfer learning techniques, the three deep neural network models 

(ResNet-18, MobileNet-V2, and Inception-V3) constructed in our study exhibited 

excellent performance. On dataset A, all these models achieved recognition accuracies 

exceeding 98%, with the MS-Inception-V3 model notably reaching an accuracy of 98.71% 

and a high Kappa coefficient of 0.983. Compared to existing transfer learning models in 

research, the models proposed in our study achieved an increase of approximately 1 

percentage point in accuracy. 

⚫ Major research contributions: 

This study has made significant contributions in the field of intelligent recognition 

of microseismic events: 
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1. Innovative Dataset Creation: Created high-quality microseismic event 

waveform databases from three mines, encompassing key events such as microseismic 

events, blasts, rock drilling, and noise. These databases not only provide solid data 

support for automated identification research of microseismic events but also ensure the 

repeatability and comparability of research results, laying a foundation for academic 

development and practical applications in this field. 

2. Automated Microseismic Signal Identification: By combining HOG 

feature extraction with shallow machine learning techniques, we achieved efficient 

automated identification of microseismic signals, reducing the labor intensity of manual 

analysis while maintaining the simplicity and efficiency of the model. 

3. Optimization of Model Architecture: Designed the MS-CNN model, a 

convolutional neural network optimized specifically for microseismic event recognition 

tasks. Through fine parameter tuning and regularization strategies, we further improved 

the model's recognition accuracy. 

4. Application and Extension of Transfer Learning Models: Innovatively 

applied transfer learning models based on deep neural networks, including ResNet-18, 

MobileNet-V2, and Inception-V3. These models not only demonstrated outstanding 

performance in the recognition and classification of microseismic events but also 

showcased robust generalization capabilities to new data, providing more accurate and 

robust intelligent recognition tools for seismic monitoring.  

In summary, this study has achieved significant results in enhancing the 

identification efficiency of microseismic signals and optimizing the accuracy of models, 

while also providing valuable data support for the monitoring of mining disasters. These 

outcomes not only accelerate the advancement of mine safety monitoring technology but 

also offer new perspectives and tools for research in this field. 

6.2  Implications 

In the following discussion, we will explore the significance of our research 

findings from two perspectives: their contribution to theoretical development and their 

practical application: 
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1. Theoretical Significance 

Our research contributes to the existing body of knowledge by offering novel 

insights into the identification and classification of microseismic events. The theoretical 

frameworks that underpin machine learning models, such as SVM and CNN, have been 

enriched by our empirical findings, which validate and expand upon current theories. 

The results have influenced our understanding of how complex patterns within 

microseismic data can be effectively recognized and differentiated by sophisticated 

algorithms, deepening the theoretical discourse on the capabilities and limitations of both 

shallow and deep learning methods in analyzing microseismic data. 

2. Practical Significance 

The practical implications of our research are substantial, particularly in the 

fields of mine safety and seismic disaster monitoring. The models and methods developed 

in this study can be directly applied to enhance real-time microseismic event detection 

systems, thereby improving risk assessment and mitigation strategies. 

By translating these research outcomes into practical tools, mining companies can benefit 

from more accurate and efficient microseismic monitoring, informing decision-making 

processes and potentially preventing catastrophic events. Our findings also have practical 

applications in other industries where seismic activity is critical, contributing to safety 

management. 

In summary, the theoretical contributions of this research advance our scientific 

comprehension of microseismic phenomena and the application of machine learning 

technologies, while its practical applications provide tangible benefits for improving 

safety protocols and decision-making in seismically active environments. 

6.3 Limitations 

In this study, there are several limitations to consider: 

1. Quality, Quantity, and Representativeness of the Dataset 

The quality, quantity, and representativeness of the dataset have significant impacts 

on the model's training and generalization abilities. Poor quality or limited quantity of 
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data may restrict the model's performance and applicability, while the representativeness 

of the dataset can affect the model's performance in real-world scenarios. 

2. Choice of Classification Models and Optimization Algorithms 

The subjective nature and limitations in selecting classification models and 

optimization algorithms may lead to different performance outcomes. The performance 

of other models and algorithms may not have been fully explored. 

3. Parameter Settings 

Parameter settings play a crucial role in the performance and generalization ability 

of the model. Limitations in parameter selection and adjustment in this study may have 

influenced the final performance and stability of the model. 

4. Limitations of Hardware Resources 

Constraints in hardware resources can impact the efficiency and scale of model 

training and testing. Limited hardware resources may restrict the model's size and 

complexity, affecting its performance. 

5. Comparative Analysis 

Limitations in the comparative analysis may stem from the inability to cover all 

possible comparative models or algorithms comprehensively, leading to constraints in 

evaluating and generalizing the research findings. Biases or incompleteness in the 

comparative analysis could also affect the accuracy of the research conclusions. 

Clearly identifying and discussing these limitations contributes to a more 

comprehensive understanding of the scope and applicability of the research findings, 

providing guidance and recommendations for future research. 

6.4 Future Research 

Based on the current study, several suggestions for future research are proposed: 

1. Enhanced Dataset Collection: Future research could focus on expanding and 

improving the dataset used for microseismic event recognition. This may involve 

collecting data from a wider range of sources or incorporating more diverse and 

representative samples to enhance the model's performance and generalization ability. 
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2. Advanced Model Development: Further research could explore the development 

of more advanced and sophisticated models for microseismic event recognition. This may 

include incorporating ensemble learning techniques (S. Jiang et al., 2018), attention 

mechanisms, or exploring the potential of deep reinforcement learning in improving the 

accuracy and efficiency of the recognition process. 

3. Optimization and Parameter Tuning: Future studies could delve deeper into the 

optimization of classification models and fine-tuning of parameters to enhance the 

performance and robustness of the models. Exploring novel optimization algorithms or 

conducting sensitivity analysis on key parameters could further improve the model's 

effectiveness. 

4. Real-world Application and Validation: It is essential to conduct real-world 

application and validation of the developed models in practical scenarios related to 

engineering safety, geological exploration, or seismic monitoring. Assessing the models' 

performance in diverse and complex environments will provide valuable insights into 

their applicability and effectiveness. 

5. Integration of Multi-modal Data: Future research could explore the integration 

of multi-modal data sources, such as incorporating seismic waveforms with other 

geophysical data or sensor information. This integration could provide a more 

comprehensive understanding of seismic events and improve the accuracy of event 

recognition systems. 

By addressing these future research suggestions, advancements can be made in the 

field of microseismic event recognition, leading to more robust and efficient models for 

various applications in engineering, geology, and seismic monitoring. 

6.5  Summary 

This research has made significant contributions to the field of microseismic event 

recognition through the application of machine learning techniques. By meticulously 

selecting data from three mining sites in China and developing advanced classification 

models, this study has demonstrated the potential for enhancing the sample quality, 

recognition efficiency, and accuracy of microseismic event data. 
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The key findings of this research highlight the effectiveness of combining HOG 

features with shallow machine learning methods, introducing CNNs, and utilizing transfer 

learning models for improved generalization and robustness. The evaluation results have 

shown exceptional performance in terms of accuracy, classification efficiency, and 

generalization capabilities. 

Overall, this research underscores the importance of automated microseismic signal 

identification and the development of optimized classification models for various 

applications in engineering safety, geological exploration, and seismic monitoring. The 

findings emphasize the significance of advancing intelligent recognition techniques for 

microseismic events, contributing to the advancement of research in seismic monitoring 

practices. 

In conclusion, the contributions of this study not only validate the superiority of the 

proposed models but also showcase their potential applications in real-world scenarios. 

The research's significance lies in its ability to enhance automated recognition processes, 

improve monitoring systems, and provide valuable insights for further advancements in 

the field of microseismic event recognition. 
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