Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/50999
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoorapa Singhaen_US
dc.contributor.authorJintana Sanwongen_US
dc.contributor.authorR. P. Sullivanen_US
dc.date.accessioned2018-09-04T04:49:41Z-
dc.date.available2018-09-04T04:49:41Z-
dc.date.issued2010-04-01en_US
dc.identifier.issn17551633en_US
dc.identifier.issn00049727en_US
dc.identifier.other2-s2.0-77957262912en_US
dc.identifier.other10.1017/S0004972709001038en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957262912&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/50999-
dc.description.abstractMarques-Smith and Sullivan [Partial orders on transformation semigroups, Monatsh. Math. 140 (2003), 103-118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the containment order: namely, ifα,β εP(X) then α⊂ β means x=x for all xdom, the domain of . The other order was the so-called natural order defined by Mitsch [A natural partial order for semigroups, Proc. Amer. Math. Soc. 97(3) (1986), 384-388] for any semigroup. In this paper, we consider these and other orders defined on the symmetric inverse semigroup I(X) and the partial Baer-Levi semigroup PS(q). We show that there are surprising differences between the orders on these semigroups, concerned with their compatibility with respect to composition and the existence of maximal and minimal elements. © 2010 Australian Mathematical Publishing Association Inc.en_US
dc.subjectMathematicsen_US
dc.titlePartial orders on partial Baer-Levi semigroupsen_US
dc.typeJournalen_US
article.title.sourcetitleBulletin of the Australian Mathematical Societyen_US
article.volume81en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Western Australiaen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.