Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/53702
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNirattaya Khamsemananen_US
dc.contributor.authorRobert F. Brownen_US
dc.contributor.authorCatherine Leeen_US
dc.contributor.authorSompong Dhompongsaen_US
dc.date.accessioned2018-09-04T09:55:58Z-
dc.date.available2018-09-04T09:55:58Z-
dc.date.issued2014-01-01en_US
dc.identifier.issn16871812en_US
dc.identifier.issn16871820en_US
dc.identifier.other2-s2.0-84899815709en_US
dc.identifier.other10.1186/1687-1812-2014-97en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899815709&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/53702-
dc.description.abstractLet X be a compact smooth n-manifold, with or without boundary, and let A be an (n - 1)-dimensional smooth submanifold of the interior of X. Let φ: A→A be a smooth map and f: (X, A)→(X, A) be a smooth map whose restriction to A is φ. If p ş̌ A is an isolated fixed point of f that is a transversal fixed point of φ, that is, the linear transformation dφp- IA: TpA→TpA is nonsingular, then the fixed point index of f at p satisfies the inequality |i(X, f , p)| ≤ 1. It follows that if φ has k fixed points, all transverse, and the Lefschetz number L(f) > k, then there is at least one fixed point of f in X \ A. Examples demonstrate that these results do not hold if the maps are not smooth. © 2014 Khamsemanan et al.; licensee Springer.en_US
dc.subjectMathematicsen_US
dc.titleA fixed point theorem for smooth extension mapsen_US
dc.typeJournalen_US
article.title.sourcetitleFixed Point Theory and Applicationsen_US
article.volume2014en_US
article.stream.affiliationsSirindhorn International Institute of Technology, Thammasat Universityen_US
article.stream.affiliationsUniversity of California, Los Angelesen_US
article.stream.affiliationsHarvard Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.