Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55959
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yanisa Chaiya | en_US |
dc.contributor.author | Preeyanuch Honyam | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-05T03:06:36Z | - |
dc.date.available | 2018-09-05T03:06:36Z | - |
dc.date.issued | 2016-01-01 | en_US |
dc.identifier.issn | 16870425 | en_US |
dc.identifier.issn | 01611712 | en_US |
dc.identifier.other | 2-s2.0-84985914603 | en_US |
dc.identifier.other | 10.1155/2016/2759090 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84985914603&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55959 | - |
dc.description.abstract | © 2016 Yanisa Chaiya et al. Let X be a nonempty set. For a fixed subset Y of X, let Fix(X, Y) be the set of all self-maps on X which fix all elements in Y. Then Fix(X, Y) is a regular monoid under the composition of maps. In this paper, we characterize the natural partial order on Fix(X, Y) and this result extends the result due to Kowol and Mitsch. Further, we find elements which are compatible and describe minimal and maximal elements. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Natural Partial Orders on Transformation Semigroups with Fixed Sets | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Mathematics and Mathematical Sciences | en_US |
article.volume | 2016 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.