Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorHongwei Liuen_US
dc.contributor.authorXiu sheng Liuen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2018-09-05T03:39:41Z-
dc.date.available2018-09-05T03:39:41Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn10902465en_US
dc.identifier.issn10715797en_US
dc.identifier.other2-s2.0-84991738766en_US
dc.identifier.other10.1016/j.ffa.2016.09.004en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84991738766&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57375-
dc.description.abstract© 2016 Elsevier Inc. The structure of λ-constacyclic codes of length 2sover the Galois ring GR(2a,m) is obtained, for any unit λ of the form 4z−1, z∈GR(2a,m). The duals codes and necessary and sufficient conditions for the existence of a self-dual λ-constacyclic code are provided. Among others, this structure is used to establish the Hamming, homogeneous, and Rosenbloom–Tsfasman distances, and Rosenbloom–Tsfasman weight distribution of all such constacyclic codes.en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleOn structure and distances of some classes of repeated-root constacyclic codes over Galois ringsen_US
dc.typeJournalen_US
article.title.sourcetitleFinite Fields and their Applicationsen_US
article.volume43en_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsHuazhong Normal Universityen_US
article.stream.affiliationsHubei Polytechnic Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.