Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57500
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wanchai Tapanyo | en_US |
dc.contributor.author | Pradthana Jaipong | en_US |
dc.date.accessioned | 2018-09-05T03:44:05Z | - |
dc.date.available | 2018-09-05T03:44:05Z | - |
dc.date.issued | 2017-12-01 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85041961413 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041961413&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57500 | - |
dc.description.abstract | © 2017 by the Mathematical Association of Thailand. All rights reserved. Let G be a finite connected graph of n vertices v1, v2,…, vn. A buttoning of G is a closed walk consisting of n shortest paths [v1, v2], [v2, v3],…, [vn−1, vn], [vn, v1]. The buttoning is said to be maximal if it has a maximum length when compared with all other buttonings of G. The goal of this work is to find a length of a maximal buttoning of non-tree graphs: complete multipartite graphs, grid graphs and rooted products of graphs. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Maximal buttonings of non-tree graphs | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Thai Journal of Mathematics | en_US |
article.volume | 15 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.