Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57503
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Worachead Sommanee | en_US |
dc.contributor.author | Kritsada Sangkhanan | en_US |
dc.date.accessioned | 2018-09-05T03:44:07Z | - |
dc.date.available | 2018-09-05T03:44:07Z | - |
dc.date.issued | 2017-12-01 | en_US |
dc.identifier.issn | 14468107 | en_US |
dc.identifier.issn | 14467887 | en_US |
dc.identifier.other | 2-s2.0-85013080224 | en_US |
dc.identifier.other | 10.1017/S144678871600080X | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013080224&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57503 | - |
dc.description.abstract | © 2017 Australian Mathematical Publishing Association Inc. Let V be a vector space and let T(V) denote the semigroup (under composition) of all linear transformations from V into V. For a fixed subspace W of V, let T(V;W) be the semigroup consisting of all linear transformations from V into W. In 2008, Sullivan ['Semigroups of linear transformations with restricted range', Bull. Aust. Math. Soc. 77(3) (2008), 441-453] proved that Q = {α ϵ T(V;W) : Vα ⊆ Wα} is the largest regular subsemigroup of T(V;W) and characterized Green's relations on T(V;W). In this paper, we determine all the maximal regular subsemigroups of Q whenW is a finite-dimensional subspace of V over a finite field. Moreover, we compute the rank and idempotent rank of Q when W is an ndimensional subspace of an m-dimensional vector space V over a finite field F. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The regular part of a semigroup of linear transformations with restricted range | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of the Australian Mathematical Society | en_US |
article.volume | 103 | en_US |
article.stream.affiliations | Chiang Mai Rajabhat University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.