Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWorachead Sommaneeen_US
dc.contributor.authorKritsada Sangkhananen_US
dc.date.accessioned2018-09-05T03:44:07Z-
dc.date.available2018-09-05T03:44:07Z-
dc.date.issued2017-12-01en_US
dc.identifier.issn14468107en_US
dc.identifier.issn14467887en_US
dc.identifier.other2-s2.0-85013080224en_US
dc.identifier.other10.1017/S144678871600080Xen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85013080224&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57503-
dc.description.abstract© 2017 Australian Mathematical Publishing Association Inc. Let V be a vector space and let T(V) denote the semigroup (under composition) of all linear transformations from V into V. For a fixed subspace W of V, let T(V;W) be the semigroup consisting of all linear transformations from V into W. In 2008, Sullivan ['Semigroups of linear transformations with restricted range', Bull. Aust. Math. Soc. 77(3) (2008), 441-453] proved that Q = {α ϵ T(V;W) : Vα ⊆ Wα} is the largest regular subsemigroup of T(V;W) and characterized Green's relations on T(V;W). In this paper, we determine all the maximal regular subsemigroups of Q whenW is a finite-dimensional subspace of V over a finite field. Moreover, we compute the rank and idempotent rank of Q when W is an ndimensional subspace of an m-dimensional vector space V over a finite field F.en_US
dc.subjectMathematicsen_US
dc.titleThe regular part of a semigroup of linear transformations with restricted rangeen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of the Australian Mathematical Societyen_US
article.volume103en_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.