Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSomlak Utudeeen_US
dc.contributor.authorMontri Maleewongen_US
dc.date.accessioned2018-09-05T03:44:07Z-
dc.date.available2018-09-05T03:44:07Z-
dc.date.issued2017-12-01en_US
dc.identifier.issn16871847en_US
dc.identifier.issn16871839en_US
dc.identifier.other2-s2.0-85017020981en_US
dc.identifier.other10.1186/s13662-017-1156-8en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85017020981&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57504-
dc.description.abstract© 2017, The Author(s). The multilevel augmentation method with the anti-derivatives of the Daubechies wavelets is presented for solving nonlinear two-point boundary value problems. The anti-derivatives of the Daubechies wavelets are applied as the multilevel bases for the subspaces of approximate solutions. This process results in a full nonlinear system that can be solved by the multilevel augmentation method for reducing computational cost. The convergence rate of the present method is shown. It is the order of 2s, 0 ≤ s≤ p when p is the order of the Daubechies wavelets. Various examples of the Dirichlet boundary conditions are shown to confirm the theoretical results.en_US
dc.subjectMathematicsen_US
dc.titleMultilevel anti-derivative wavelets with augmentation for nonlinear boundary value problemsen_US
dc.typeJournalen_US
article.title.sourcetitleAdvances in Difference Equationsen_US
article.volume2017en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsKasetsart Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.