Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57507
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nopparat Pleanmani | en_US |
dc.contributor.author | Boyko Gyurov | en_US |
dc.contributor.author | Sayan Panma | en_US |
dc.date.accessioned | 2018-09-05T03:44:08Z | - |
dc.date.available | 2018-09-05T03:44:08Z | - |
dc.date.issued | 2017-12-01 | en_US |
dc.identifier.issn | 17938317 | en_US |
dc.identifier.issn | 17938309 | en_US |
dc.identifier.other | 2-s2.0-85038122252 | en_US |
dc.identifier.other | 10.1142/S1793830917500793 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85038122252&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57507 | - |
dc.description.abstract | © World Scientific Publishing Company. For a vertex property P and a graph G, a set S of vertices of G is a P-set of G if S ∈ P. The maximum and minimum cardinality of a P-set of G are denoted by MP(G) and mP(G), respectively. If S is a P-set such that its cardinality equals MP(G) or mP(G), we say that S is an MP-set or mP-set of G, respectively. In this paper, we obtain such numbers of generalized lexicographic product graphs in some vertex properties. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Partially composed property of generalized lexicographic product graphs | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Discrete Mathematics, Algorithms and Applications | en_US |
article.volume | 9 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Georgia Gwinnett College | en_US |
article.stream.affiliations | Centre of Excellence in Mathematics | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.