Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBernd Billhardten_US
dc.contributor.authorYanisa Chaiyaen_US
dc.contributor.authorEkkachai Laysirikulen_US
dc.contributor.authorKritsada Sangkhananen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-05T03:44:10Z-
dc.date.available2018-09-05T03:44:10Z-
dc.date.issued2017-11-02en_US
dc.identifier.issn15324125en_US
dc.identifier.issn00927872en_US
dc.identifier.other2-s2.0-85016967196en_US
dc.identifier.other10.1080/00927872.2017.1291811en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85016967196&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57509-
dc.description.abstract© 2017 Taylor & Francis. Let ΠL1denote a direct power of L1, the two-element left zero semigroup with identity adjoined. A semigroup S is called left quasi-ample if for each a∈S there exists a unique idempotent a+∈S such that xa = ya ⇔ xa+= ya+for all x, y∈S1and the left ample condition e2= e ⇒ (ae)+a = ae holds. Generalizing a recent result in [3], we prove that the semigroups in the title are embeddable into certain transformation semigroups. Our embedding provides an easy way to construct (finite) proper covers for (finite) such semigroups. Moreover, we show that each proper such semigroup is embeddable into a semidirect product of a ΠL1-embeddable band by a right cancellative monoid, giving a partial answer to a question raised in [1].en_US
dc.subjectMathematicsen_US
dc.titleOn left quasi-ample semigroups with ΠL<sup>1</sup>-embeddable band of idempotentsen_US
dc.typeJournalen_US
article.title.sourcetitleCommunications in Algebraen_US
article.volume45en_US
article.stream.affiliationsUniversitat Kasselen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsNaresuan Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.