Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57536
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yanisa Chaiya | en_US |
dc.contributor.author | Preeyanuch Honyam | en_US |
dc.contributor.author | Jintana Sanwong | en_US |
dc.date.accessioned | 2018-09-05T03:45:15Z | - |
dc.date.available | 2018-09-05T03:45:15Z | - |
dc.date.issued | 2017-01-01 | en_US |
dc.identifier.issn | 13036149 | en_US |
dc.identifier.issn | 13000098 | en_US |
dc.identifier.other | 2-s2.0-85010496928 | en_US |
dc.identifier.other | 10.3906/mat-1507-7 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85010496928&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/57536 | - |
dc.description.abstract | © Tübitak. Let Y be a fixed subset of a nonempty set X and let Fix(X, Y ) be the set of all self maps on X which fix all elements in Y . Then under the composition of maps, Fix(X, Y ) is a regular monoid. In this paper, we prove that there are only three types of maximal subsemigroups of Fix (X, Y ) and these maximal subsemigroups coincide with the maximal regular subsemigroups when X \ Y is a finite set with |X \ Y | ≥ 2. We also give necessary and sufficient conditions for Fix(X, Y ) to be factorizable, unit-regular, and directly finite. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Turkish Journal of Mathematics | en_US |
article.volume | 41 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.