Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58801
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYanisa Chaiyaen_US
dc.contributor.authorChollawat Pookpienlerten_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-05T04:32:39Z-
dc.date.available2018-09-05T04:32:39Z-
dc.date.issued2018-06-04en_US
dc.identifier.issn17937183en_US
dc.identifier.issn17935571en_US
dc.identifier.other2-s2.0-85047971291en_US
dc.identifier.other10.1142/S1793557119500621en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047971291&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58801-
dc.description.abstract© 2019 World Scientific Publishing Company Let (Formula presented.) be a vector space and (Formula presented.) denote the semigroup (under the composition of maps) of all linear transformations from (Formula presented.) into itself. For a fixed subspace (Formula presented.) of (Formula presented.), let (Formula presented.) be the subsemigroup of (Formula presented.) consisting of all linear transformations on (Formula presented.) which fix all elements in (Formula presented.). In this paper, we describe Green’s relations, regularity and ideals of (Formula presented.); and characterize when (Formula presented.) is factorizable, unit-regular and directly finite, from which the results on (Formula presented.) can be recaptured easily when taking (Formula presented.) as a zero subspace of (Formula presented.).en_US
dc.subjectMathematicsen_US
dc.titleSemigroups of linear transformations with fixed subspaces: Green’s relations, ideals and finiteness conditionsen_US
dc.typeJournalen_US
article.title.sourcetitleAsian-European Journal of Mathematicsen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.