Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58805
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYanisa Chaiyaen_US
dc.contributor.authorChollawat Pookpienlerten_US
dc.contributor.authorNuttawoot Nupoen_US
dc.contributor.authorSayan Panmaen_US
dc.date.accessioned2018-09-05T04:32:42Z-
dc.date.available2018-09-05T04:32:42Z-
dc.date.issued2018-05-09en_US
dc.identifier.issn22277390en_US
dc.identifier.other2-s2.0-85046620077en_US
dc.identifier.other10.3390/math6050076en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85046620077&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58805-
dc.description.abstract© 2018 by the author. Let Knbe a complete graph on n vertices. Denote by SKnthe set of all subgraphs of Kn. For each G, H ∈ SKn, the ring sum of G and H is a graph whose vertex set is V(G) ∪ V(H) and whose edges are that of either G or H, but not of both. Then SKnis a semigroup under the ring sum. In this paper, we study Green's relations on SKnand characterize ideals, minimal ideals, maximal ideals, and principal ideals of SKn. Moreover, maximal subsemigroups and a class of maximal congruences are investigated. Furthermore, we prescribe the natural order on SKnand consider minimal elements, maximal elements and covering elements of SKnunder this order.en_US
dc.subjectMathematicsen_US
dc.titleOn the semigroup whose elements are subgraphs of a complete graphen_US
dc.typeJournalen_US
article.title.sourcetitleMathematicsen_US
article.volume6en_US
article.stream.affiliationsThammasat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.