Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/58818
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBernd Billhardten_US
dc.contributor.authorYanisa Chaiyaen_US
dc.contributor.authorEkkachai Laysirikulen_US
dc.contributor.authorNuttawoot Nupoen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2018-09-05T04:32:58Z-
dc.date.available2018-09-05T04:32:58Z-
dc.date.issued2018-03-22en_US
dc.identifier.issn00371912en_US
dc.identifier.other2-s2.0-85044310472en_US
dc.identifier.other10.1007/s00233-018-9932-7en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85044310472&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/58818-
dc.description.abstract© 2018 Springer Science+Business Media, LLC, part of Springer Nature Let G be a group. We show that the Birget–Rhodes prefix expansion (Formula presented.) and the Margolis–Meakin expansion M(X; f) of G with respect to (Formula presented.) can be regarded as inverse subsemigroups of a common E-unitary inverse semigroup P. We construct P as an inverse subsemigroup of an E-unitary inverse monoid (Formula presented.) which is a homomorphic image of the free product U of the free semigroup (Formula presented.) on X and G. The semigroup P satisfies a universal property with respect to homomorphisms into the permissible hull C(S) of a suitable E-unitary inverse semigroup S, with (Formula presented.), from which the characterizing universal properties of (Formula presented.) and M(X; f) can be recaptured easily.en_US
dc.subjectMathematicsen_US
dc.titleA unifying approach to the Margolis–Meakin and Birget–Rhodes group expansionen_US
dc.typeJournalen_US
article.title.sourcetitleSemigroup Forumen_US
article.stream.affiliationsUniversitat Kasselen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsNaresuan Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.