Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/59746
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJintana Sanwongen_US
dc.contributor.authorBoorapa Singhaen_US
dc.contributor.authorR. P. Sullivanen_US
dc.date.accessioned2018-09-10T03:20:52Z-
dc.date.available2018-09-10T03:20:52Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn14398516en_US
dc.identifier.other2-s2.0-63849105958en_US
dc.identifier.other10.1007/s10114-008-6280-7en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=63849105958&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/59746-
dc.description.abstractIn 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformations of an infinite set X under composition. Here, we determine all maximal congruences on the semigroup ℤnunder multiplication modulo n. And, when Y ⊆ X, we do the same for the semigroup T(X, Y) consisting of all elements of T(X) whose range is contained in Y. We also characterise the minimal congruences on T(X, Y). © 2009 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag GmbH.en_US
dc.subjectMathematicsen_US
dc.titleMaximal and minimal congruences on some semigroupsen_US
dc.typeJournalen_US
article.title.sourcetitleActa Mathematica Sinica, English Seriesen_US
article.volume25en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Western Australiaen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.