Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65694
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSomsak Chanaimen_US
dc.contributor.authorWilawan Srichaikulen_US
dc.contributor.authorChongkolnee Rungruangen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2019-08-05T04:39:41Z-
dc.date.available2019-08-05T04:39:41Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85068484033en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068484033&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65694-
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. The GDP is very important for measure the economics growth in country, in this paper use the relevance vector machine(RVM) to predict the GDP in some ASIAN country (Thailand, Malaysia and Singapore) and compare with the autoregressive model (AR(p)). From the result show that RVM dominate the AP(p) model by measuring the error (MAE, MAPE, MSE and RMSE) from both training data and validation data.en_US
dc.subjectMathematicsen_US
dc.titleForecasting GDP in ASIAN countries using relevant vector machinesen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume17en_US
article.stream.affiliationsPrince of Songkla Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.