Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65705
Full metadata record
DC FieldValueLanguage
dc.contributor.authorH. Q. Dinhen_US
dc.contributor.authorXiaoqiang Wangen_US
dc.contributor.authorHongwei Liuen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2019-08-05T04:39:50Z-
dc.date.available2019-08-05T04:39:50Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn0012365Xen_US
dc.identifier.other2-s2.0-85068236507en_US
dc.identifier.other10.1016/j.disc.2019.06.017en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068236507&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65705-
dc.description.abstract© 2019 Elsevier B.V. Let p be an odd prime, and λ be a nonzero element of the finite field Fpm. The λ-constacyclic codes of length 2ps over Fpm are classified as the ideals of quotient ring [Formula presented] in terms of their generator polynomials. Based on these generator polynomials, the symbol-pair distances of all such λ-constacyclic codes of length 2ps are obtained in this paper. As an application, all MDS symbol-pair constacyclic codes of length 2ps over Fpm are established, which produce many new MDS symbol-pair codes with good parameters.en_US
dc.subjectMathematicsen_US
dc.titleOn the symbol-pair distances of repeated-root constacyclic codes of length 2p<sup>s</sup>en_US
dc.typeJournalen_US
article.title.sourcetitleDiscrete Mathematicsen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsHubei Universityen_US
article.stream.affiliationsHuazhong Normal Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.