Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67899
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNirutt Pipattanajindaen_US
dc.contributor.authorYangkok Kimen_US
dc.contributor.authorSrichan Arwornen_US
dc.date.accessioned2020-04-02T15:10:31Z-
dc.date.available2020-04-02T15:10:31Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn14355914en_US
dc.identifier.issn09110119en_US
dc.identifier.other2-s2.0-85074269110en_US
dc.identifier.other10.1007/s00373-019-02109-zen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074269110&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67899-
dc.description.abstract© 2019, Springer Japan KK, part of Springer Nature. In this paper, we study the natural partial order ≤ on SEnd(G), the strong endomorphism monoid of a finite graph G and characterize minimal elements and maximal elements of (SEnd(G) , ≤). Then we introduce the concept of connectedness on (SEnd(G) , ≤) by using the natural partial order ≤ and determine the number of connected components of SEnd(G) under certain conditions.en_US
dc.subjectMathematicsen_US
dc.titleNaturally ordered strong endomorphisms on graphsen_US
dc.typeJournalen_US
article.title.sourcetitleGraphs and Combinatoricsen_US
article.volume35en_US
article.stream.affiliationsRajabhat Universityen_US
article.stream.affiliationsDong Eui Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.