Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67899
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nirutt Pipattanajinda | en_US |
dc.contributor.author | Yangkok Kim | en_US |
dc.contributor.author | Srichan Arworn | en_US |
dc.date.accessioned | 2020-04-02T15:10:31Z | - |
dc.date.available | 2020-04-02T15:10:31Z | - |
dc.date.issued | 2019-11-01 | en_US |
dc.identifier.issn | 14355914 | en_US |
dc.identifier.issn | 09110119 | en_US |
dc.identifier.other | 2-s2.0-85074269110 | en_US |
dc.identifier.other | 10.1007/s00373-019-02109-z | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074269110&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/67899 | - |
dc.description.abstract | © 2019, Springer Japan KK, part of Springer Nature. In this paper, we study the natural partial order ≤ on SEnd(G), the strong endomorphism monoid of a finite graph G and characterize minimal elements and maximal elements of (SEnd(G) , ≤). Then we introduce the concept of connectedness on (SEnd(G) , ≤) by using the natural partial order ≤ and determine the number of connected components of SEnd(G) under certain conditions. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Naturally ordered strong endomorphisms on graphs | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Graphs and Combinatorics | en_US |
article.volume | 35 | en_US |
article.stream.affiliations | Rajabhat University | en_US |
article.stream.affiliations | Dong Eui University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.