Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKittikun Kittidachananen_US
dc.contributor.authorWatha Minsanen_US
dc.contributor.authorDonlapark Pornnopparathen_US
dc.contributor.authorPhimphaka Taninpongen_US
dc.date.accessioned2020-10-14T08:30:57Z-
dc.date.available2020-10-14T08:30:57Z-
dc.date.issued2020-01-01en_US
dc.identifier.other2-s2.0-85084086533en_US
dc.identifier.other10.1109/KST48564.2020.9059326en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85084086533&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70441-
dc.description.abstract© 2020 IEEE. This research aims to apply one-class support vector machine classifier (OCSVM) for anomaly detection and estimate the hyperparameters of OCSVM using the grid search method. The proposed grid search one-class support vector machine algorithm (GS-OCSVM) is then applied to the fraud detection problem. Data used in this study consists of German credit card and European cardholder credit card transactions which treat the fraud transactions as anomalies. In this study, we estimated the values of the hyperparameters y and v of OCSVM by considering the maximum of area under the curve (AVC). The results show that the GS-OCSVM can detect fraud better than the isolation forest as true negative rate is higher than isolation forest for both datasets.en_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.titleAnomaly detection based on GS-OCSVM classificationen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleKST 2020 - 2020 12th International Conference on Knowledge and Smart Technologyen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.