Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70708
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChollawat Pookpienlerten_US
dc.contributor.authorPreeyanuch Honyamen_US
dc.contributor.authorJintana Sanwongen_US
dc.date.accessioned2020-10-14T08:39:43Z-
dc.date.available2020-10-14T08:39:43Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85087299746en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85087299746&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70708-
dc.description.abstract© 2020 by TJM. All rights reserved. For a fixed nonempty subset Y of X, let T (X, Y) be the semigroup consisting of all transformations from X into Y. Let ρ be an equivalence relation on X, ˆρ the restriction of ρ on Y and R a cross-section of the partition Y/ρ. We define T (X, Y, ρ, R) = {α ∈ T (X, Y): Rα ⊆ R and (a, b) ∈ ρ ⇒ (aα, bα) ∈ ρ}. Then T (X,Y, ρ,R) is a subsemigroup of T (X,Y). In this paper, we describe regular elements in T (X,Y, ρ,R), characterize when T (X, Y, ρ, R) is a regular semigroup and investigate some classes of T (X, Y, ρ, R) such as completely regular and inverse from which the results on T (X, ρ, R) and T (X, Y) can be recaptured easily when taking Y = X and ρ to be the identity relation, respectively. Moreover, the description of unit-regularity on T (X, ρ, R) is obtained.en_US
dc.subjectMathematicsen_US
dc.titleRegularity of a semigroup of transformations with restricted range that preserves an equivalence relation and a cross-sectionen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume18en_US
article.stream.affiliationsRajamangala University of Technology Lannaen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.