Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/76258
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParavee Maneejuken_US
dc.contributor.authorWilawan Srichaikulen_US
dc.date.accessioned2022-10-16T07:07:35Z-
dc.date.available2022-10-16T07:07:35Z-
dc.date.issued2021-06-01en_US
dc.identifier.issn14337479en_US
dc.identifier.issn14327643en_US
dc.identifier.other2-s2.0-85105741544en_US
dc.identifier.other10.1007/s00500-021-05830-1en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105741544&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/76258-
dc.description.abstractThis study aims at examining the predictability of the autoregressive integrated moving average and deep learning methods consisting of the artificial neural network, recurrent neural network, long short-term memory (LSTM), and support vector machine. We will use these tools to estimate the parameters for predicting the accuracy of the foreign exchange returns. This study compares the forecasting performance between the autoregressive integrated moving average and deep learning methods. The comparison is based on the mean absolute percentage error, the root-mean-squared error, the mean absolute error, and Theil U. The empirical results indicate that the LSTM seems to outperform the other deep learning models as well as the traditional regression models.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleForecasting foreign exchange markets: further evidence using machine learning modelsen_US
dc.typeJournalen_US
article.title.sourcetitleSoft Computingen_US
article.volume25en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.